Stabilization of Rayleigh–Bénard convection by means of mode reduction

H. Park, M. C. Sung, Jin-Yong Chung
{"title":"Stabilization of Rayleigh–Bénard convection by means of mode reduction","authors":"H. Park, M. C. Sung, Jin-Yong Chung","doi":"10.1098/rspa.2003.1175","DOIUrl":null,"url":null,"abstract":"A method is developed to suppress the intensity of the Rayleigh–Bénard convection by adjusting the heat flux distribution at the bottom boundary under the constraint of constant heat input to the system. The appropriate profile of heat flux, which is changing continually in accordance with the shape of convection cells in the domain, is determined by the model predictive control. The optimal control strategy given by the model predictive control is implemented efficiently by employing the Karhunen–Loéve Galerkin procedure through which the Boussinesq equation is reduced to a low–dimensional dynamic model. This method is found to yield accurate results with a decent requirement of computer time.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"116 1","pages":"1807 - 1830"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2003.1175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A method is developed to suppress the intensity of the Rayleigh–Bénard convection by adjusting the heat flux distribution at the bottom boundary under the constraint of constant heat input to the system. The appropriate profile of heat flux, which is changing continually in accordance with the shape of convection cells in the domain, is determined by the model predictive control. The optimal control strategy given by the model predictive control is implemented efficiently by employing the Karhunen–Loéve Galerkin procedure through which the Boussinesq equation is reduced to a low–dimensional dynamic model. This method is found to yield accurate results with a decent requirement of computer time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用模态缩减法稳定rayleigh - b结结德对流
提出了一种在系统热输入恒定的条件下,通过调节底部边界的热流密度分布来抑制瑞利-巴姆纳德对流强度的方法。模型预测控制确定了区域内随对流单元形状不断变化的合适的热通量剖面。采用karhunen - losamve Galerkin过程,将Boussinesq方程简化为一个低维动态模型,有效地实现了模型预测控制所给出的最优控制策略。这种方法可以产生准确的结果,但对计算机时间的要求并不高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
期刊最新文献
Plankton Nanocrystalline ceria imparts better high–temperature protection Spectral concentrations and resonances of a second–order block operator matrix and an associated λ–rational Sturm-Liouville problem Mechanical field fluctuations in polycrystals estimated by homogenization techniques Oblique scattering of plane flexural–gravity waves by heterogeneities in sea–ice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1