VisualPhishNet: Zero-Day Phishing Website Detection by Visual Similarity

Sahar Abdelnabi, Katharina Krombholz, Mario Fritz
{"title":"VisualPhishNet: Zero-Day Phishing Website Detection by Visual Similarity","authors":"Sahar Abdelnabi, Katharina Krombholz, Mario Fritz","doi":"10.1145/3372297.3417233","DOIUrl":null,"url":null,"abstract":"Phishing websites are still a major threat in today's Internet ecosystem. Despite numerous previous efforts, similarity-based detection methods do not offer sufficient protection for the trusted websites, in particular against unseen phishing pages. This paper contributes VisualPhishNet, a new similarity-based phishing detection framework, based on a triplet Convolutional Neural Network (CNN). VisualPhishNet learns profiles for websites in order to detect phishing websites by a similarity metric that can generalize to pages with new visual appearances. We furthermore present VisualPhish, the largest dataset to date that facilitates visual phishing detection in an ecologically valid manner. We show that our method outperforms previous visual similarity phishing detection approaches by a large margin while being robust against a range of evasion attacks.","PeriodicalId":20481,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","volume":"74 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372297.3417233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

Phishing websites are still a major threat in today's Internet ecosystem. Despite numerous previous efforts, similarity-based detection methods do not offer sufficient protection for the trusted websites, in particular against unseen phishing pages. This paper contributes VisualPhishNet, a new similarity-based phishing detection framework, based on a triplet Convolutional Neural Network (CNN). VisualPhishNet learns profiles for websites in order to detect phishing websites by a similarity metric that can generalize to pages with new visual appearances. We furthermore present VisualPhish, the largest dataset to date that facilitates visual phishing detection in an ecologically valid manner. We show that our method outperforms previous visual similarity phishing detection approaches by a large margin while being robust against a range of evasion attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VisualPhishNet:基于视觉相似性的零日钓鱼网站检测
网络钓鱼网站仍然是当今互联网生态系统的主要威胁。尽管以前做了很多努力,但基于相似性的检测方法并不能为可信网站提供足够的保护,特别是针对看不见的网络钓鱼页面。本文提出了一种基于三联体卷积神经网络(CNN)的基于相似性的网络钓鱼检测框架VisualPhishNet。VisualPhishNet学习网站的配置文件,以便通过相似性度量来检测网络钓鱼网站,该度量可以推广到具有新视觉外观的页面。我们进一步介绍VisualPhish,迄今为止最大的数据集,以生态有效的方式促进视觉网络钓鱼检测。我们表明,我们的方法在很大程度上优于以前的视觉相似性网络钓鱼检测方法,同时对一系列逃避攻击具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Session 1D: Applied Cryptography and Cryptanalysis HACLxN: Verified Generic SIMD Crypto (for all your favourite platforms) Pointproofs: Aggregating Proofs for Multiple Vector Commitments Session details: Session 4D: Distributed Protocols A Performant, Misuse-Resistant API for Primality Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1