James P. Anderson, J. Doane, H. Grunloh, M. Brookman
{"title":"Beyond Fusion: The Application of Fusion-Based Microwave Technology to Other Industries","authors":"James P. Anderson, J. Doane, H. Grunloh, M. Brookman","doi":"10.1109/IRMMW-THz.2019.8874105","DOIUrl":null,"url":null,"abstract":"Technology developed in the pursuit of fusion energy has had an impact in many other industries. The requirements being met by advanced microwave and millimeter wave components for fusion applications can open up whole new areas in emerging industries. For plasma heating, microwave components such as waveguide, switches, and polarizers, are being built which can withstand megawatts of sustained power at frequencies up to 170 GHz. In microwave-based diagnostics for fusion systems, enormous frequency bandwidths such as 35–170 GHz are possible for transmission lines at very high propagation efficiency (<% loss over 100 m). The techniques and materials being developed for these systems are transferrable to other microwave-based applications.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"65 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THz.2019.8874105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Technology developed in the pursuit of fusion energy has had an impact in many other industries. The requirements being met by advanced microwave and millimeter wave components for fusion applications can open up whole new areas in emerging industries. For plasma heating, microwave components such as waveguide, switches, and polarizers, are being built which can withstand megawatts of sustained power at frequencies up to 170 GHz. In microwave-based diagnostics for fusion systems, enormous frequency bandwidths such as 35–170 GHz are possible for transmission lines at very high propagation efficiency (<% loss over 100 m). The techniques and materials being developed for these systems are transferrable to other microwave-based applications.