Design of High-performance GDI Logic Based 8-tap FIR Filter At 45nm CMOS Technology Using Nikhilam Multiplier

IF 3.6 1区 数学 Q1 MATHEMATICS, APPLIED Mathematical Models & Methods in Applied Sciences Pub Date : 2022-10-27 DOI:10.46300/9101.2022.16.28
B. Pasuluri, V. K. Sonti
{"title":"Design of High-performance GDI Logic Based 8-tap FIR Filter At 45nm CMOS Technology Using Nikhilam Multiplier","authors":"B. Pasuluri, V. K. Sonti","doi":"10.46300/9101.2022.16.28","DOIUrl":null,"url":null,"abstract":"Over the past few decades, advances in IC technology have steadily shrunk feature sizes, necessitating the placement of more operational circuits on every chip. In designing digital circuits, a novel GDI based circuit is indeed the center of consideration, since it requires less power and achieves greater efficiency. GDI-based circuits mimic CMOS transistors but feature fewer transistors with a greater capacity for performance and reliability. This paper investigates the modelling and implementation of a Finite Impulse-Response (FIR) block developed utilizing GDI-based circuits as well as basic blocks. In this study, an eight-tap FIR architecture relying on GDI cells is created. The results reveal that even a FIR architecture with eight taps and GDI delivers reduced power consumption and performance improvement.","PeriodicalId":49860,"journal":{"name":"Mathematical Models & Methods in Applied Sciences","volume":"6 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models & Methods in Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.46300/9101.2022.16.28","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Over the past few decades, advances in IC technology have steadily shrunk feature sizes, necessitating the placement of more operational circuits on every chip. In designing digital circuits, a novel GDI based circuit is indeed the center of consideration, since it requires less power and achieves greater efficiency. GDI-based circuits mimic CMOS transistors but feature fewer transistors with a greater capacity for performance and reliability. This paper investigates the modelling and implementation of a Finite Impulse-Response (FIR) block developed utilizing GDI-based circuits as well as basic blocks. In this study, an eight-tap FIR architecture relying on GDI cells is created. The results reveal that even a FIR architecture with eight taps and GDI delivers reduced power consumption and performance improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Nikhilam倍频器的45纳米CMOS技术高性能GDI逻辑8分频FIR滤波器设计
在过去的几十年里,IC技术的进步已经稳步缩小了特征尺寸,需要在每个芯片上放置更多的操作电路。在设计数字电路时,一种新型的基于GDI的电路确实是考虑的中心,因为它需要更少的功率和更高的效率。基于gdi的电路模拟CMOS晶体管,但具有更少的晶体管和更高的性能和可靠性。本文研究了利用基于gdi的电路和基本模块开发的有限脉冲响应(FIR)模块的建模和实现。在本研究中,创建了一个基于GDI单元的八抽头FIR架构。结果表明,即使具有8个水龙头和GDI的FIR架构也可以降低功耗并提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
17.10%
发文量
61
审稿时长
1 months
期刊介绍: The purpose of this journal is to provide a medium of exchange for scientists engaged in applied sciences (physics, mathematical physics, natural, and technological sciences) where there exists a non-trivial interplay between mathematics, mathematical modelling of real systems and mathematical and computer methods oriented towards the qualitative and quantitative analysis of real physical systems. The principal areas of interest of this journal are the following: 1.Mathematical modelling of systems in applied sciences; 2.Mathematical methods for the qualitative and quantitative analysis of models of mathematical physics and technological sciences; 3.Numerical and computer treatment of mathematical models or real systems. Special attention will be paid to the analysis of nonlinearities and stochastic aspects. Within the above limitation, scientists in all fields which employ mathematics are encouraged to submit research and review papers to the journal. Both theoretical and applied papers will be considered for publication. High quality, novelty of the content and potential for the applications to modern problems in applied sciences and technology will be the guidelines for the selection of papers to be published in the journal. This journal publishes only articles with original and innovative contents. Book reviews, announcements and tutorial articles will be featured occasionally.
期刊最新文献
Analysis of complex chemotaxis models Global boundedness in a 2D chemotaxis-Navier–Stokes system with flux limitation and nonlinear production Global Classical Solvability and Stabilization in a Two-Dimensional Chemotaxis-Fluid System with Sub-Logarithmic Sensitivity Existence of Multi-spikes in the Keller-Segel model with Logistic Growth Critical Mass for Keller-Segel Systems with Supercritical Nonlinear Sensitivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1