{"title":"Design and simulation of front end converter for fuel cell based electric vehicle applications","authors":"J. Kumar, P. Mallikarjuna Rao","doi":"10.1109/ICPCSI.2017.8392338","DOIUrl":null,"url":null,"abstract":"The increasing consumption of conventional energy in the world with increasing costs of fossil fuel is justifiable reason for using fuel cell technology with high performance. However, the output voltage of fuel cell stack is very low and it is not sufficient to drive the electric vehicle. This paper put forward the three level hybrid boost dc-dc converter, which can be step-up the fuel cell output voltage with high voltage gain. The working principle of present converter is based on the traditional neutral clamped multi level inverter. Here, IGBT based three level converter is designed and steady state of filtering capacitors are observed with MATLAB software. Fuel cell stack is designed in the place of normal dc battery. Hybrid boost dc-dc converter is connected to Multi level inverter for AC output to drive EV. Finally, the simulation results are discussed.","PeriodicalId":6589,"journal":{"name":"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)","volume":"136 1","pages":"462-469"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPCSI.2017.8392338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The increasing consumption of conventional energy in the world with increasing costs of fossil fuel is justifiable reason for using fuel cell technology with high performance. However, the output voltage of fuel cell stack is very low and it is not sufficient to drive the electric vehicle. This paper put forward the three level hybrid boost dc-dc converter, which can be step-up the fuel cell output voltage with high voltage gain. The working principle of present converter is based on the traditional neutral clamped multi level inverter. Here, IGBT based three level converter is designed and steady state of filtering capacitors are observed with MATLAB software. Fuel cell stack is designed in the place of normal dc battery. Hybrid boost dc-dc converter is connected to Multi level inverter for AC output to drive EV. Finally, the simulation results are discussed.