Open-Source Essential Protein Prediction Model by Integrating Chi-Square and Support Vector Machine

S. R. M. Sekhar, G. Siddesh, S. Manvi
{"title":"Open-Source Essential Protein Prediction Model by Integrating Chi-Square and Support Vector Machine","authors":"S. R. M. Sekhar, G. Siddesh, S. Manvi","doi":"10.4018/ijossp.2020070103","DOIUrl":null,"url":null,"abstract":"Identification and analysis of protein play a vital role in drug design and disease prediction. There are several open-source applications that have been developed for identifying essential proteins which are based on biological or topological features. These techniques infer the possibility of proteins to be essential by using the network topology and feature selection, which can ignore some of the features to reduce the complexity and, subsequently, results in less accuracy. In the paper, the authors have used selenium driver to scrap the dataset. Later, the authors integrated the chi-square method with support vector machine for the prediction of essential proteins in baker yeast. Here, chi-square is a test of dissimilarity used for altering the record, and afterward, the support vector machine is used to classify the test dataset. The results show that the proposed model Chi-SVM model achieves an accuracy of 99.56%, whereas BC and CC achieved an accuracy of 84.0% and 86.0%. Finally, the proposed model is validated using Statistical performance measures such as PPA, NPA, SA, and STA.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"5 1","pages":"38-56"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.2020070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Identification and analysis of protein play a vital role in drug design and disease prediction. There are several open-source applications that have been developed for identifying essential proteins which are based on biological or topological features. These techniques infer the possibility of proteins to be essential by using the network topology and feature selection, which can ignore some of the features to reduce the complexity and, subsequently, results in less accuracy. In the paper, the authors have used selenium driver to scrap the dataset. Later, the authors integrated the chi-square method with support vector machine for the prediction of essential proteins in baker yeast. Here, chi-square is a test of dissimilarity used for altering the record, and afterward, the support vector machine is used to classify the test dataset. The results show that the proposed model Chi-SVM model achieves an accuracy of 99.56%, whereas BC and CC achieved an accuracy of 84.0% and 86.0%. Finally, the proposed model is validated using Statistical performance measures such as PPA, NPA, SA, and STA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卡方和支持向量机的必需蛋白预测模型
蛋白质的鉴定和分析在药物设计和疾病预测中起着至关重要的作用。已经开发了几个开源应用程序,用于识别基于生物或拓扑特征的基本蛋白质。这些技术通过使用网络拓扑和特征选择来推断蛋白质是必不可少的可能性,这可以忽略一些特征来降低复杂性,从而导致准确性降低。在本文中,作者使用了selenium驱动程序来废弃数据集。随后,作者将卡方方法与支持向量机相结合,用于面包酵母中必需蛋白质的预测。这里,卡方是用于改变记录的不相似性测试,然后,支持向量机用于对测试数据集进行分类。结果表明,所提出的模型Chi-SVM的准确率为99.56%,而BC和CC的准确率分别为84.0%和86.0%。最后,使用PPA、NPA、SA和STA等统计性能度量来验证所提出的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
期刊最新文献
Organizational Influencers in Open-Source Software Projects Enhancing Clustering Performance Using Topic Modeling-Based Dimensionality Reduction Cross Project Software Refactoring Prediction Using Optimized Deep Learning Neural Network with the Aid of Attribute Selection Bug Triage Automation Approaches Modelling and Simulation of Patient Flow in the Emergency Department During the COVID-19 Pandemic Using Hierarchical Coloured Petri Net
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1