A Full Envelope Robust Linear Parameter-Varying Control Method for Aircraft Engines

IF 0.1 4区 工程技术 Q4 ENGINEERING, AEROSPACE Aerospace America Pub Date : 2023-08-31 DOI:10.3390/aerospace10090769
Bin Shen, Lingfei Xiao, Zhuolin Ye
{"title":"A Full Envelope Robust Linear Parameter-Varying Control Method for Aircraft Engines","authors":"Bin Shen, Lingfei Xiao, Zhuolin Ye","doi":"10.3390/aerospace10090769","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of full flight envelope control for aircraft engines, the design of a linear parameter-varying (LPV) controller is described in this paper. First, according to the nonlinear aerodynamic model of the aircraft engine, the LPV engine model for the controller design is obtained through the Jacobian linearization and fitting technique. Then, the flight envelope is divided into several sub-regions, and the intersection of adjacent sub-regions is not empty. The sub-region LPV controller is designed using the parameter-dependent Lyapunov function (PDLF)-based LPV synthesis method, while eliminating the dependence of the LPV controller on scheduling parameter derivatives. In order to ensure the stability and performance of the aircraft engine across the full flight envelope, a mixing LPV control method is proposed to design the LPV controller in the overall region. The effectiveness of the proposed method is verified by simulating a dual-spool turbofan engine on a nonlinear component level model and comparing the proposed method with the gain scheduling based on PI and H∞ point design.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"28 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10090769","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

In order to solve the problem of full flight envelope control for aircraft engines, the design of a linear parameter-varying (LPV) controller is described in this paper. First, according to the nonlinear aerodynamic model of the aircraft engine, the LPV engine model for the controller design is obtained through the Jacobian linearization and fitting technique. Then, the flight envelope is divided into several sub-regions, and the intersection of adjacent sub-regions is not empty. The sub-region LPV controller is designed using the parameter-dependent Lyapunov function (PDLF)-based LPV synthesis method, while eliminating the dependence of the LPV controller on scheduling parameter derivatives. In order to ensure the stability and performance of the aircraft engine across the full flight envelope, a mixing LPV control method is proposed to design the LPV controller in the overall region. The effectiveness of the proposed method is verified by simulating a dual-spool turbofan engine on a nonlinear component level model and comparing the proposed method with the gain scheduling based on PI and H∞ point design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
航空发动机全包络鲁棒线性变参数控制方法
为了解决飞机发动机的全飞行包线控制问题,设计了一种线性变参数控制器。首先,根据航空发动机的非线性气动模型,通过雅可比线性化拟合技术得到用于控制器设计的LPV发动机模型;然后,将飞行包络线划分为几个子区域,相邻子区域的交集不为空。采用基于参数相关Lyapunov函数(PDLF)的LPV综合方法设计了子区域LPV控制器,同时消除了LPV控制器对调度参数导数的依赖。为了保证飞机发动机在整个飞行包线内的稳定性和性能,提出了一种混合LPV控制方法,设计了整个区域的LPV控制器。通过在非线性部件级模型上对双轴涡扇发动机进行仿真,并与基于PI和H∞点设计的增益调度方法进行比较,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace America
Aerospace America 工程技术-工程:宇航
自引率
0.00%
发文量
9
审稿时长
4-8 weeks
期刊最新文献
A Novel Digital Twin Framework for Aeroengine Performance Diagnosis GPU Acceleration of CFD Simulations in OpenFOAM Recent Advances in Airfoil Self-Noise Passive Reduction Characteristics of Vortices around Forward Swept Wing at Low Speeds/High Angles of Attack A Digital-Twin-Based Detection and Protection Framework for SDC-Induced Sinkhole and Grayhole Nodes in Satellite Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1