An Auto-Matching Model with Pattern Recognition Using Bayesian Classifier for Parallel Programming on A Multi-Core Processor

Kete Wang, Lisheng Wang, Xinkao Liao, George Albert
{"title":"An Auto-Matching Model with Pattern Recognition Using Bayesian Classifier for Parallel Programming on A Multi-Core Processor","authors":"Kete Wang, Lisheng Wang, Xinkao Liao, George Albert","doi":"10.4304/jnw.9.9.2556-2566","DOIUrl":null,"url":null,"abstract":"The emerging multi-core processor architecture has greatly escalated scientific computing, but, at the same time, made parallel programming increasingly complex and challenging. In this paper, the use of the Auto Parallel Classification (APC) model in an Object-Oriented Parallel Model (OOPModel) environment is demonstrated. A designed module provides a traversal and a reduction of the DAG task graph. The parallel characteristics vectors, which are analyzed according to Naive Bayesian classification theory, are critical parameters for matching and generating parallel design patterns and various skeletal frameworks. Through extensive experimentation, it is demonstrated, that by using the Map-Reduce pattern to develop a minimum-sort algorithm, in conjunction with the APC model, we can achieve a reduction in the complexity of parallel programming and the minimization of errors. Most importantly, through scientific experimentation, this document will further demonstrate that correct computational results and movements toward linear speed-up can be accomplished.","PeriodicalId":14643,"journal":{"name":"J. Networks","volume":"33 1","pages":"2556-2566"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4304/jnw.9.9.2556-2566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emerging multi-core processor architecture has greatly escalated scientific computing, but, at the same time, made parallel programming increasingly complex and challenging. In this paper, the use of the Auto Parallel Classification (APC) model in an Object-Oriented Parallel Model (OOPModel) environment is demonstrated. A designed module provides a traversal and a reduction of the DAG task graph. The parallel characteristics vectors, which are analyzed according to Naive Bayesian classification theory, are critical parameters for matching and generating parallel design patterns and various skeletal frameworks. Through extensive experimentation, it is demonstrated, that by using the Map-Reduce pattern to develop a minimum-sort algorithm, in conjunction with the APC model, we can achieve a reduction in the complexity of parallel programming and the minimization of errors. Most importantly, through scientific experimentation, this document will further demonstrate that correct computational results and movements toward linear speed-up can be accomplished.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯分类器的模式识别自动匹配模型在多核处理器上的并行编程
新兴的多核处理器体系结构极大地提升了科学计算的水平,但同时也使并行编程变得越来越复杂和具有挑战性。本文演示了自动并行分类(APC)模型在面向对象并行模型(OOPModel)环境中的应用。设计的模块提供DAG任务图的遍历和简化。根据朴素贝叶斯分类理论分析的并行特征向量是匹配和生成并行设计模式和各种骨架框架的关键参数。通过大量的实验证明,通过使用Map-Reduce模式开发一种最小排序算法,结合APC模型,我们可以实现并行编程复杂性的降低和错误的最小化。最重要的是,通过科学实验,本文将进一步证明正确的计算结果和线性加速的运动是可以实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asynchronous Multi-Channel MAC Protocol A Wireless Charging Infrastructure for Future Electrical Vehicular Adhoc Networks Application of Predictive Analytics in Telecommunications Project Management Secondary User Aggressiveness Optimization in Sensing-Transmission Scheduling for Cognitive Radio Networks Enhanced Chunk Regulation Algorithm for Superior QoS in Heterogeneous P2P Video on Demand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1