Deep Spatial-Temporal Fusion Network for Video-Based Person Re-identification

Lin Chen, Hua Yang, Ji Zhu, Qin Zhou, Shuang Wu, Zhiyong Gao
{"title":"Deep Spatial-Temporal Fusion Network for Video-Based Person Re-identification","authors":"Lin Chen, Hua Yang, Ji Zhu, Qin Zhou, Shuang Wu, Zhiyong Gao","doi":"10.1109/CVPRW.2017.191","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel deep end-to-end network to automatically learn the spatial-temporal fusion features for video-based person re-identification. Specifically, the proposed network consists of CNN and RNN to jointly learn both the spatial and the temporal features of input image sequences. The network is optimized by utilizing the siamese and softmax losses simultaneously to pull the instances of the same person closer and push the instances of different persons apart. Our network is trained on full-body and part-body image sequences respectively to learn complementary representations from holistic and local perspectives. By combining them together, we obtain more discriminative features that are beneficial to person re-identification. Experiments conducted on the PRID-2011, i-LIDS-VIS and MARS datasets show that the proposed method performs favorably against existing approaches.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"9 1","pages":"1478-1485"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, we propose a novel deep end-to-end network to automatically learn the spatial-temporal fusion features for video-based person re-identification. Specifically, the proposed network consists of CNN and RNN to jointly learn both the spatial and the temporal features of input image sequences. The network is optimized by utilizing the siamese and softmax losses simultaneously to pull the instances of the same person closer and push the instances of different persons apart. Our network is trained on full-body and part-body image sequences respectively to learn complementary representations from holistic and local perspectives. By combining them together, we obtain more discriminative features that are beneficial to person re-identification. Experiments conducted on the PRID-2011, i-LIDS-VIS and MARS datasets show that the proposed method performs favorably against existing approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视频的人物再识别深度时空融合网络
在本文中,我们提出了一种新的深度端到端网络来自动学习基于视频的人物再识别的时空融合特征。具体来说,该网络由CNN和RNN组成,共同学习输入图像序列的空间和时间特征。通过同时利用siamese和softmax损失来优化网络,将同一个人的实例拉得更近,并将不同人的实例分开。我们的网络分别在全身和部分身体图像序列上进行训练,从整体和局部角度学习互补表示。将它们结合在一起,我们得到了更多有利于人的再识别的判别特征。在PRID-2011、i- lid - vis和MARS数据集上进行的实验表明,该方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Energy Expenditure in Sports by Thermal Video Analysis Court-Based Volleyball Video Summarization Focusing on Rally Scene Generating 5D Light Fields in Scattering Media for Representing 3D Images Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1