The inherent instability of axisymmetric magnetostrophic dynamo models

IF 1.1 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Geophysical and Astrophysical Fluid Dynamics Pub Date : 2022-11-02 DOI:10.1080/03091929.2022.2148666
Colin M. Hardy, P. Livermore, Jitse Niesen
{"title":"The inherent instability of axisymmetric magnetostrophic dynamo models","authors":"Colin M. Hardy, P. Livermore, Jitse Niesen","doi":"10.1080/03091929.2022.2148666","DOIUrl":null,"url":null,"abstract":"Recent studies have demonstrated the possibility of constructing magnetostrophic dynamo models, which describe the slowly evolving background state of Earth's magnetic field when inertia and viscosity are negligible. Here we explore the properties of steady, stable magnetostrophic states as a leading order approximation to the slow dynamics within Earth's core. For the case of an axisymmetric magnetostrophic system driven by a prescribed α-effect, we confirmed the existence of four known steady states: , , where is purely dipolar and is purely quadrupolar. Importantly, here we show that in all but the most weakly driven cases, an initial magnetic field that is not purely dipolar or quadrapolar never converges to these states. Despite this instability, we also show that there are a plethora of instantaneous solutions that are quasi-steady, but nevertheless unstable. If the dynamics in Earth's core are reasonably modelled by a strongly driven α-effect, this work suggests that the background state can never be steady. We discuss the difficulties in comparing our magnetostrophic models with geomagnetic timeseries.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"20 1","pages":"499 - 520"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2022.2148666","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

Recent studies have demonstrated the possibility of constructing magnetostrophic dynamo models, which describe the slowly evolving background state of Earth's magnetic field when inertia and viscosity are negligible. Here we explore the properties of steady, stable magnetostrophic states as a leading order approximation to the slow dynamics within Earth's core. For the case of an axisymmetric magnetostrophic system driven by a prescribed α-effect, we confirmed the existence of four known steady states: , , where is purely dipolar and is purely quadrupolar. Importantly, here we show that in all but the most weakly driven cases, an initial magnetic field that is not purely dipolar or quadrapolar never converges to these states. Despite this instability, we also show that there are a plethora of instantaneous solutions that are quasi-steady, but nevertheless unstable. If the dynamics in Earth's core are reasonably modelled by a strongly driven α-effect, this work suggests that the background state can never be steady. We discuss the difficulties in comparing our magnetostrophic models with geomagnetic timeseries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轴对称磁转发电机模型的固有不稳定性
最近的研究已经证明了建立磁转发电机模型的可能性,该模型描述了在惯性和粘度可以忽略不计的情况下地球磁场缓慢演变的背景状态。在这里,我们探索稳定,稳定磁转状态的性质,作为地球核心内缓慢动力学的一级近似。对于由规定α-效应驱动的轴对称磁转系统,我们证实了四个已知稳态的存在:,,其中为纯偶极态和纯四极态。重要的是,这里我们表明,除了最弱驱动的情况,在所有情况下,一个不是纯偶极或四极的初始磁场永远不会收敛到这些状态。尽管存在这种不稳定性,我们也证明了有大量的瞬时解是准稳定的,但仍然是不稳定的。如果地核的动力学是由强烈驱动的α-效应合理地模拟的,那么这项工作表明,背景状态永远不可能是稳定的。我们讨论了磁转模式与地磁时间序列比较的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical and Astrophysical Fluid Dynamics
Geophysical and Astrophysical Fluid Dynamics 地学天文-地球化学与地球物理
CiteScore
3.10
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.
期刊最新文献
Zonostrophic instabilities in magnetohydrodynamic Kolmogorov flow Scales of vertical motions due to an isolated vortex in ageostrophic balanced flows Can the observable solar activity spectrum be reproduced by a simple dynamo model? Solitary wave scattering by segmented arc-shaped breakwater Self-adjointness of sound-proof models for magnetic buoyancy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1