{"title":"Summarizing Labeled Multi-Graphs","authors":"Dimitris Berberidis, P. Liang, L. Akoglu","doi":"10.48550/arXiv.2206.07674","DOIUrl":null,"url":null,"abstract":"Real-world graphs can be difficult to interpret and visualize beyond a certain size. To address this issue, graph summarization aims to simplify and shrink a graph, while maintaining its high-level structure and characteristics. Most summarization methods are designed for homogeneous, undirected, simple graphs; however, many real-world graphs are ornate; with characteristics including node labels, directed edges, edge multiplicities, and self-loops. In this paper we propose LM-Gsum, a versatile yet rigorous graph summarization model that (to the best of our knowledge, for the first time) can handle graphs with all the aforementioned characteristics (and any combination thereof). Moreover, our proposed model captures basic sub-structures that are prevalent in real-world graphs, such as cliques, stars, etc. LM-Gsum compactly quantifies the information content of a complex graph using a novel encoding scheme, where it seeks to minimize the total number of bits required to encode (i) the summary graph, as well as (ii) the corrections required for reconstructing the input graph losslessly. To accelerate the summary construction, it creates super-nodes efficiently by merging nodes in groups. Experiments demonstrate that LM-Gsum facilitates the visualization of real-world complex graphs, revealing interpretable structures and high- level relationships. Furthermore, LM-Gsum achieves better trade-off between compression rate and running time, relative to existing methods (only) on comparable settings.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.07674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Real-world graphs can be difficult to interpret and visualize beyond a certain size. To address this issue, graph summarization aims to simplify and shrink a graph, while maintaining its high-level structure and characteristics. Most summarization methods are designed for homogeneous, undirected, simple graphs; however, many real-world graphs are ornate; with characteristics including node labels, directed edges, edge multiplicities, and self-loops. In this paper we propose LM-Gsum, a versatile yet rigorous graph summarization model that (to the best of our knowledge, for the first time) can handle graphs with all the aforementioned characteristics (and any combination thereof). Moreover, our proposed model captures basic sub-structures that are prevalent in real-world graphs, such as cliques, stars, etc. LM-Gsum compactly quantifies the information content of a complex graph using a novel encoding scheme, where it seeks to minimize the total number of bits required to encode (i) the summary graph, as well as (ii) the corrections required for reconstructing the input graph losslessly. To accelerate the summary construction, it creates super-nodes efficiently by merging nodes in groups. Experiments demonstrate that LM-Gsum facilitates the visualization of real-world complex graphs, revealing interpretable structures and high- level relationships. Furthermore, LM-Gsum achieves better trade-off between compression rate and running time, relative to existing methods (only) on comparable settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
标注多图总结
现实世界的图形可能很难解释和可视化超过一定的大小。为了解决这个问题,图形摘要旨在简化和缩小图形,同时保持其高级结构和特征。大多数总结方法是为齐次的、无向的、简单的图设计的;然而,许多现实世界的图表都是华丽的;具有节点标签、有向边、边多重性和自环等特征。在本文中,我们提出了LM-Gsum,这是一个通用但严格的图摘要模型,(据我们所知,这是第一次)可以处理具有上述所有特征(以及它们的任何组合)的图。此外,我们提出的模型捕获了在现实世界图中普遍存在的基本子结构,如派系、星形等。LM-Gsum使用一种新颖的编码方案紧凑地量化了复杂图的信息内容,其中它寻求最小化编码(i)汇总图所需的总比特数,以及(ii)无损重建输入图所需的校正。该算法通过分组合并节点,高效地创建超级节点,加快了摘要的构建速度。实验表明,LM-Gsum有助于现实世界复杂图形的可视化,揭示可解释的结构和高层关系。此外,LM-Gsum在压缩率和运行时间之间实现了更好的权衡,相对于现有的方法(仅)在可比较的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Full-disk Deep Learning Model for Solar Flare Prediction using Attribution Methods Offline Reinforcement Learning with On-Policy Q-Function Regularization Visualizing Overlapping Biclusterings and Boolean Matrix Factorizations An Examination of Wearable Sensors and Video Data Capture for Human Exercise Classification Online Network Source Optimization with Graph-Kernel MAB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1