H. Madokoro, Kantarou Kakuta, Ryo Fujisawa, N. Shimoi, Kazuhito Sato, Li Xu
{"title":"Bed-leaving behavior detection and recognition based on time-series learning using Elman-Type Counter Propagation Networks","authors":"H. Madokoro, Kantarou Kakuta, Ryo Fujisawa, N. Shimoi, Kazuhito Sato, Li Xu","doi":"10.1109/ICCAS.2014.6987838","DOIUrl":null,"url":null,"abstract":"This paper presents a bed-leaving detection method using Elman-type Counter Propagation Networks (ECPNs), a novel machine-learning-based method used for time-series signals. In our earlier study, we used CPNs, a form of supervised model of Self-Organizing Maps (SOMs), to produce category maps to learn relations among input and teaching signals. For this study, we inserted a feedback loop as the second Grossberg layer for learning time-series features. Moreover, we developed an original caster-stand sensor using piezoelectric films to measure weight changes of a subject on a bed to be loaded through bed legs. The features of our sensor are that it obviates a power supply for operations and that it can be installed on existing beds. We evaluated our sensor system by examining 10 people in an environment representing a clinical site. The mean recognition accuracy for seven behavior patterns is 71.1%. Furthermore, the recognition accuracy for three behavior patterns of sleeping, sitting, and leaving the bed is 83.6% Falsely recognized patterns remained inside of respective categories of sleeping and sitting. We infer that this system is applicable to an actual environment as a novel sensor system requiring no restraint of patients.","PeriodicalId":6525,"journal":{"name":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","volume":"128 1","pages":"540-545"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2014.6987838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a bed-leaving detection method using Elman-type Counter Propagation Networks (ECPNs), a novel machine-learning-based method used for time-series signals. In our earlier study, we used CPNs, a form of supervised model of Self-Organizing Maps (SOMs), to produce category maps to learn relations among input and teaching signals. For this study, we inserted a feedback loop as the second Grossberg layer for learning time-series features. Moreover, we developed an original caster-stand sensor using piezoelectric films to measure weight changes of a subject on a bed to be loaded through bed legs. The features of our sensor are that it obviates a power supply for operations and that it can be installed on existing beds. We evaluated our sensor system by examining 10 people in an environment representing a clinical site. The mean recognition accuracy for seven behavior patterns is 71.1%. Furthermore, the recognition accuracy for three behavior patterns of sleeping, sitting, and leaving the bed is 83.6% Falsely recognized patterns remained inside of respective categories of sleeping and sitting. We infer that this system is applicable to an actual environment as a novel sensor system requiring no restraint of patients.