Munshi Md. Shafwat Yazdan, Md Tanvir Ahad, Zayed Mallick, S. Mallick, I. Jahan, Mozammel Mazumder
{"title":"An Overview of the Glucocorticoids’ Pathways in the Environment and Their Removal Using Conventional Wastewater Treatment Systems","authors":"Munshi Md. Shafwat Yazdan, Md Tanvir Ahad, Zayed Mallick, S. Mallick, I. Jahan, Mozammel Mazumder","doi":"10.3390/POLLUTANTS1030012","DOIUrl":null,"url":null,"abstract":"Numerous micropollutants, especially endocrine-disrupting compounds (EDCs), can pollute natural aquatic environments causing great concern for human and ecosystem health. While most of the conversation revolves around estrogen and androgen, glucocorticoids (GCs) are also prevalent in natural waters. Despite the fact that GCs play a crucial role in both inflammatory and immunologic development activities, they are also detected in natural waters and considered as one of the EDCs. Although many researchers have mentioned the adverse effect of GCs on aquatic organisms, a complete management technology to remove these pollutants from surface and coastal waters is yet to be established. In the current study, six glucocorticoids (prednisone, prednisolone, cortisone, cortisol, dexamethasone, and 6R-methylprednisolone) have been selected according to their higher detection frequency in environmental waters. The concentration of selected GCs ranged from 0.05 ng/L to 433 ng/L and their removal efficiency ranged from 10% to 99% depending on the water source and associated removal technologies. Although advanced technologies are available for achieving successful removal of GCs, associated operational and economic considerations make implementation of these processes unsustainable. Further studies are necessary to resolve the entry routes of GCs compounds into the surface water or drinking water permanently as well as employ sustainable detection and removal technologies.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"167 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollutants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/POLLUTANTS1030012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Numerous micropollutants, especially endocrine-disrupting compounds (EDCs), can pollute natural aquatic environments causing great concern for human and ecosystem health. While most of the conversation revolves around estrogen and androgen, glucocorticoids (GCs) are also prevalent in natural waters. Despite the fact that GCs play a crucial role in both inflammatory and immunologic development activities, they are also detected in natural waters and considered as one of the EDCs. Although many researchers have mentioned the adverse effect of GCs on aquatic organisms, a complete management technology to remove these pollutants from surface and coastal waters is yet to be established. In the current study, six glucocorticoids (prednisone, prednisolone, cortisone, cortisol, dexamethasone, and 6R-methylprednisolone) have been selected according to their higher detection frequency in environmental waters. The concentration of selected GCs ranged from 0.05 ng/L to 433 ng/L and their removal efficiency ranged from 10% to 99% depending on the water source and associated removal technologies. Although advanced technologies are available for achieving successful removal of GCs, associated operational and economic considerations make implementation of these processes unsustainable. Further studies are necessary to resolve the entry routes of GCs compounds into the surface water or drinking water permanently as well as employ sustainable detection and removal technologies.