{"title":"Comparative Analysis of Identifying Accuracy of Online Misinformation of Covid-19 Using SVM Algorithm with Decision Tree Classification","authors":"N. Pravallika, Dr.K. Sashi Rekha","doi":"10.47059/alinteri/v36i1/ajas21072","DOIUrl":null,"url":null,"abstract":"Aim: To improve the accuracy percentage of predicting misinformation about COVID-19 using SVM algorithm. Materials and methods: Support Vector Machine (SVM) with sample size = 20 and Decision Tree classification with sample size = 20 was iterated at different times for predicting the accuracy percentage of misinformation about COVID19. The Novel Poly kernel function used in SVM maps the dataset into higher dimensional space which helps to improve accuracy percentage. Results and Discussion: SVM has significantly better accuracy (94.48%) compared to Decision Tree accuracy (93%). There was a statistical significance between SVM and the Decision Tree (p=0.000) (p<0.05 Independent Sample T-test). Conclusion: SVM with Novel Poly kernel helps in predicting with more accuracy the percentage of misinformation about COVID-19.","PeriodicalId":42396,"journal":{"name":"Alinteri Journal of Agriculture Sciences","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alinteri Journal of Agriculture Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47059/alinteri/v36i1/ajas21072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To improve the accuracy percentage of predicting misinformation about COVID-19 using SVM algorithm. Materials and methods: Support Vector Machine (SVM) with sample size = 20 and Decision Tree classification with sample size = 20 was iterated at different times for predicting the accuracy percentage of misinformation about COVID19. The Novel Poly kernel function used in SVM maps the dataset into higher dimensional space which helps to improve accuracy percentage. Results and Discussion: SVM has significantly better accuracy (94.48%) compared to Decision Tree accuracy (93%). There was a statistical significance between SVM and the Decision Tree (p=0.000) (p<0.05 Independent Sample T-test). Conclusion: SVM with Novel Poly kernel helps in predicting with more accuracy the percentage of misinformation about COVID-19.