A Torque Balance Method for Multi-Cylinder Gasoline Engines With Non-Uniform Cylinder-to-Cylinder Combustion Strategies

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS Mechatronic Systems and Control Pub Date : 2019-11-26 DOI:10.1115/dscc2019-9231
Qinghua Lin, Pingen Chen
{"title":"A Torque Balance Method for Multi-Cylinder Gasoline Engines With Non-Uniform Cylinder-to-Cylinder Combustion Strategies","authors":"Qinghua Lin, Pingen Chen","doi":"10.1115/dscc2019-9231","DOIUrl":null,"url":null,"abstract":"\n Lean burn gasoline engines have attracted more and more attentions over the past two decades. One of the main challenges in commercializing lean burn gasoline engines in the United States is lean NOx control to meet the stringent NOx emission regulation. Several types of lean aftertreatment systems including passive selective catalytic reduction (SCR) systems and lean NOx traps (LNTs), have been intensively investigated to meet the NOx emission requirements without triggering significant penalties on fuel efficiency. One of the most promising technologies to achieve this goal is non-uniform cylinder-to-cylinder combustion (NUCCC) control strategies. However, successful implementation of NUCCC strategies are challenging tasks since it may cause cylinder-to-cylinder torque imbalance and thus deterioration of drivability. The purpose of this study is to propose and evaluate a systematic method for generating the references of fuel quantity and air quantity for different cylinders to simultaneously achieve cylinder-to-cylinder torque balance and non-uniform cylinder-to-cylinder air/fuel ratio (AFR) for multi-cylinder engines in various scenarios. To validate the effectiveness of the proposed method, simulation studies were carried out using a multi-zone engine model. The simulation results show that, the proposed references, if successfully tracked, can lead to torque balance across the cylinders as well as non-uniform cylinder-to-cylinder AFR.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Lean burn gasoline engines have attracted more and more attentions over the past two decades. One of the main challenges in commercializing lean burn gasoline engines in the United States is lean NOx control to meet the stringent NOx emission regulation. Several types of lean aftertreatment systems including passive selective catalytic reduction (SCR) systems and lean NOx traps (LNTs), have been intensively investigated to meet the NOx emission requirements without triggering significant penalties on fuel efficiency. One of the most promising technologies to achieve this goal is non-uniform cylinder-to-cylinder combustion (NUCCC) control strategies. However, successful implementation of NUCCC strategies are challenging tasks since it may cause cylinder-to-cylinder torque imbalance and thus deterioration of drivability. The purpose of this study is to propose and evaluate a systematic method for generating the references of fuel quantity and air quantity for different cylinders to simultaneously achieve cylinder-to-cylinder torque balance and non-uniform cylinder-to-cylinder air/fuel ratio (AFR) for multi-cylinder engines in various scenarios. To validate the effectiveness of the proposed method, simulation studies were carried out using a multi-zone engine model. The simulation results show that, the proposed references, if successfully tracked, can lead to torque balance across the cylinders as well as non-uniform cylinder-to-cylinder AFR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非均匀燃烧多缸汽油机的扭矩平衡方法
近二十年来,稀燃汽油机越来越受到人们的关注。在美国,瘦燃汽油发动机商业化的主要挑战之一是瘦氮氧化物控制,以满足严格的氮氧化物排放法规。包括被动选择性催化还原(SCR)系统和精益氮氧化物捕集器(LNTs)在内的几种类型的精益后处理系统已经得到了深入的研究,以满足氮氧化物排放要求,同时又不会对燃油效率产生重大影响。实现这一目标最有前途的技术之一是非均匀缸间燃烧(NUCCC)控制策略。然而,成功实施NUCCC策略是一项具有挑战性的任务,因为它可能导致缸间扭矩不平衡,从而降低驾驶性能。本研究的目的是提出并评估一种系统的方法来生成不同气缸的燃油量和空气量参考,同时实现多缸发动机在不同场景下的缸间扭矩平衡和非均匀的缸间空气/燃料比(AFR)。为了验证该方法的有效性,采用多区发动机模型进行了仿真研究。仿真结果表明,所提出的参考点如果被成功跟踪,可以导致缸间扭矩平衡以及非均匀的缸间AFR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechatronic Systems and Control
Mechatronic Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.40
自引率
66.70%
发文量
27
期刊介绍: This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.
期刊最新文献
APPLICATION OF MULTIAXIAL CNC TECHNOLOGY IN PRECISION MOLD MANUFACTURING, 1-9. TRAJECTORY TRACKING OF NONHOLONOMIC CONSTRAINT MOBILE ROBOT BASED ON ADRC INTERNET INFORMATION COLLECTION AND DATA ANALYSIS BASED ON ARTIFICIAL INTELLIGENCE, 1-9. SI DESIGN ON TRACTION BRAKING CHARACTERISTICS TEST OF TRACTION MOTOR FOR RAIL TRANSIT, 1-9. MODELLING AND SIMULATION OF FRICTION RESISTANCE OF SUPERHYDROPHOBIC SURFACE MICROSTRUCTURE, 202-209.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1