Non-Adiabatic Holonomic Quantum Gates

Vera Neef, Julien Pinske, M. Heinrich, Stefan Scheel, A. Szameit
{"title":"Non-Adiabatic Holonomic Quantum Gates","authors":"Vera Neef, Julien Pinske, M. Heinrich, Stefan Scheel, A. Szameit","doi":"10.1109/CLEO/Europe-EQEC57999.2023.10231394","DOIUrl":null,"url":null,"abstract":"Implementing quantum gates as non-Abelian holonomies, a class of topologically protected unitary operators, is a particularly promising paradigm for the design of intrinsically stable quantum computers [1]. In contrast to dynamic phases, the geometric phase accumulated by a quantum system propagating through a Hilbert space $\\mathcal{H}$ depends exclusively on its path. In general, geometric phases can exhibit arbitrary dimensionality. Wilczek and Zee introduced the idea of multi-dimensional, non-Abelian geometric phases - so called holonomies [2]. Anandan later dropped the requirement of adiabaticity to create holonomies, that are truly time-independent [3]. Non-adiabatic holonomies rely on a subspace $\\mathcal{H}_{\\text{geo}}$ of the Hilbert-space that is spanned by states $\\{\\vert \\Phi_{k}\\rangle\\}_{k}$ that fulfill $(\\Phi_{k}\\vert \\hat{H}\\vert \\Phi_{j}\\rangle=0$, where $\\hat{H}$ is the system's Hamiltonian. Restricting the propagation to $\\mathcal{H}_{\\text{geo}}$ ensures parallel transport and, thus, a purely geometric phase (see Fig. 1a) [4], [5]. Quantum optics constitutes a particularly versatile platform for quantum information processing, and in particular for the construction of non-adiabatic holonomic quantum computers: In addition to integration and miniaturization provided by the platform, the bosonic nature of photons also conveniently allows for multiple excitations of the same mode, readily expanding $\\mathcal{H}_{\\text{geo}}$ and enabling the synthesis of holonomies from higher symmetry groups $\\mathrm{U}(N)$ as larger and more capable computational units [6], [7].","PeriodicalId":19477,"journal":{"name":"Oceans","volume":"32 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10231394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Implementing quantum gates as non-Abelian holonomies, a class of topologically protected unitary operators, is a particularly promising paradigm for the design of intrinsically stable quantum computers [1]. In contrast to dynamic phases, the geometric phase accumulated by a quantum system propagating through a Hilbert space $\mathcal{H}$ depends exclusively on its path. In general, geometric phases can exhibit arbitrary dimensionality. Wilczek and Zee introduced the idea of multi-dimensional, non-Abelian geometric phases - so called holonomies [2]. Anandan later dropped the requirement of adiabaticity to create holonomies, that are truly time-independent [3]. Non-adiabatic holonomies rely on a subspace $\mathcal{H}_{\text{geo}}$ of the Hilbert-space that is spanned by states $\{\vert \Phi_{k}\rangle\}_{k}$ that fulfill $(\Phi_{k}\vert \hat{H}\vert \Phi_{j}\rangle=0$, where $\hat{H}$ is the system's Hamiltonian. Restricting the propagation to $\mathcal{H}_{\text{geo}}$ ensures parallel transport and, thus, a purely geometric phase (see Fig. 1a) [4], [5]. Quantum optics constitutes a particularly versatile platform for quantum information processing, and in particular for the construction of non-adiabatic holonomic quantum computers: In addition to integration and miniaturization provided by the platform, the bosonic nature of photons also conveniently allows for multiple excitations of the same mode, readily expanding $\mathcal{H}_{\text{geo}}$ and enabling the synthesis of holonomies from higher symmetry groups $\mathrm{U}(N)$ as larger and more capable computational units [6], [7].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非绝热完整量子门
将量子门实现为非阿贝尔完整,一类拓扑保护的酉算子,是设计本质稳定量子计算机的一个特别有前途的范例[1]。与动态相位相反,通过希尔伯特空间$\mathcal{H}$传播的量子系统积累的几何相位完全取决于其路径。一般来说,几何相位可以表现出任意的维度。Wilczek和Zee引入了多维、非阿贝尔几何相位的概念——即所谓的完整组态[2]。Anandan后来放弃了绝热性的要求来创建真正与时间无关的完整系统[3]。非绝热完整依赖于希尔伯特空间的子空间$\mathcal{H}_{\text{geo}}$,该空间由满足$(\Phi_{k}\vert \hat{H}\vert \Phi_{j}\rangle=0$的状态$\{\vert \Phi_{k}\rangle\}_{k}$张成,其中$\hat{H}$是系统的哈密顿量。将传播限制为$\mathcal{H}_{\text{geo}}$确保了平行传输,从而保证了纯几何相位(见图1a)[4],[5]。量子光学构成了一个特别通用的量子信息处理平台,特别是对于非绝热完整量子计算机的构建:除了平台提供的集成和小型化之外,光子的玻色子性质也方便地允许同一模式的多次激发,容易扩展$\mathcal{H}_{\text{geo}}$,并使更高对称群$\mathrm{U}(N)$的完整合成成为更大,更有能力的计算单元[6],[7]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Spatial and Developmental Policy Directions Affecting Marine Spatial Planning in the Northern Aegean Sea, Greece Hydrographic vs. Dynamic Description of a Basin: The Example of Baroclinic Motion in the Ionian Sea In-Water Photo Identification, Site Fidelity, and Seasonal Presence of Harbor Seals (Phoca vitulina richardii) in Burrows Pass, Fidalgo Island, Washington Regional Fluctuations in the Eastern Tropical North Pacific Oxygen Minimum Zone during the Late Holocene Reply to Hendawitharana et al. Comment on “Arulananthan et al. The Status of the Coral Reefs of the Jaffna Peninsula (Northern Sri Lanka), with 36 Coral Species New to Sri Lanka Confirmed by DNA Bar-Coding. Oceans 2021, 2, 509–529”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1