{"title":"Enhancing Efficiency of High-Viscosity Oil Development with Using Autonomous Flow Control Devices. Case Study in Western Siberia.","authors":"T. Solovyev","doi":"10.2118/196851-ms","DOIUrl":null,"url":null,"abstract":"\n Most of the new fields in Western Siberia have unfavorable conditions for the development of the field, such as the presence of an extensive gas cap, the low power of oil-saturated oil rim thicknesses, and the underlying water. The field is also characterized by weakly consolidated sandstone and high-viscosity oil. For the deposition of an early breakthrough of water or gas into the wellbore, it was decided to conduct a pilot stage of project on the use of various types of completion (autonomous inflow control devices), which allow controlling the inflow along the wellbore. Formation of completion strategy requires continuous monitoring of wells, evaluation of the effectiveness of cleaning intervals after drilling, interval flow along the wellbore, as well as the detection of water or gas breakthrough areas to identify the ineffective placement of AFCD.\n This article presents the results of the use of autonomous flow control devices, an assessment of their effectiveness according to PLT and well logs interpretation and intellectual tracers, as well as analytical methods.\n The article also describes general information about the inflow control devices technology, their characteristics and problems that the operators user may encounter when using one or another element of high-tech completion, gives reasons for the use of autonomous inflow control devices at the considered development object.\n Analysis of field data and PLT and well logs results revealed that the devices actually work and help to limit water and gas compared to wells that are equipped only with wire filters without inflow control, and also begin to form a unified strategy and concept of well completion based on the data\n The results of the work show that currently the use of AFCD for the project is favorable, and the completion of wells without flow control in these conditions is impractical.","PeriodicalId":10977,"journal":{"name":"Day 2 Wed, October 23, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 23, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196851-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most of the new fields in Western Siberia have unfavorable conditions for the development of the field, such as the presence of an extensive gas cap, the low power of oil-saturated oil rim thicknesses, and the underlying water. The field is also characterized by weakly consolidated sandstone and high-viscosity oil. For the deposition of an early breakthrough of water or gas into the wellbore, it was decided to conduct a pilot stage of project on the use of various types of completion (autonomous inflow control devices), which allow controlling the inflow along the wellbore. Formation of completion strategy requires continuous monitoring of wells, evaluation of the effectiveness of cleaning intervals after drilling, interval flow along the wellbore, as well as the detection of water or gas breakthrough areas to identify the ineffective placement of AFCD.
This article presents the results of the use of autonomous flow control devices, an assessment of their effectiveness according to PLT and well logs interpretation and intellectual tracers, as well as analytical methods.
The article also describes general information about the inflow control devices technology, their characteristics and problems that the operators user may encounter when using one or another element of high-tech completion, gives reasons for the use of autonomous inflow control devices at the considered development object.
Analysis of field data and PLT and well logs results revealed that the devices actually work and help to limit water and gas compared to wells that are equipped only with wire filters without inflow control, and also begin to form a unified strategy and concept of well completion based on the data
The results of the work show that currently the use of AFCD for the project is favorable, and the completion of wells without flow control in these conditions is impractical.