Optimal Generic L-Out-of-M Counting Rule for Neyman-Pearson Test in Cognitive Radio Networks

Narasimha Rao Banavathu
{"title":"Optimal Generic L-Out-of-M Counting Rule for Neyman-Pearson Test in Cognitive Radio Networks","authors":"Narasimha Rao Banavathu","doi":"10.1109/LNET.2023.3309537","DOIUrl":null,"url":null,"abstract":"This letter proposes a generic \n<inline-formula> <tex-math>${L}$ </tex-math></inline-formula>\n-out-of-\n<inline-formula> <tex-math>${M}$ </tex-math></inline-formula>\n counting rule-based sensing, wherein the cognitive radios (CRs) with non-identical receiver operating characteristic (ROC) curves and the fusion node cooperatively identify the primary user’s state. We formulate a generalized Neyman-Pearson problem to jointly optimize the individual CRs’ operational points on the ROC curves and the generic \n<inline-formula> <tex-math>${L}$ </tex-math></inline-formula>\n-out-of-\n<inline-formula> <tex-math>${M}$ </tex-math></inline-formula>\n counting rule for the CR system. Then, a fast-sensing problem is formulated to find the least number of CRs needed for practical sensing. We provide generalized solutions for any detector employed in the CR system. The proposed scheme shows superior detection performance compared to the traditional scheme.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 4","pages":"189-193"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10232977/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This letter proposes a generic ${L}$ -out-of- ${M}$ counting rule-based sensing, wherein the cognitive radios (CRs) with non-identical receiver operating characteristic (ROC) curves and the fusion node cooperatively identify the primary user’s state. We formulate a generalized Neyman-Pearson problem to jointly optimize the individual CRs’ operational points on the ROC curves and the generic ${L}$ -out-of- ${M}$ counting rule for the CR system. Then, a fast-sensing problem is formulated to find the least number of CRs needed for practical sensing. We provide generalized solutions for any detector employed in the CR system. The proposed scheme shows superior detection performance compared to the traditional scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
认知无线电网络中奈曼-皮尔逊测试的最优通用 L-Out-of-M 计数规则
本文提出了一种基于通用{L}$ -out-of-{M}$计数规则的传感方法,其中具有非相同接收器工作特性曲线(ROC)的认知无线电(CR)和融合节点可以合作识别主用户的状态。我们提出了一个广义的奈曼-皮尔逊(Neyman-Pearson)问题,以共同优化 ROC 曲线上各个 CR 的工作点和 CR 系统的通用 ${L}$ -out- ${M}$ 计数规则。然后,我们提出了一个快速传感问题,以找到实际传感所需的最少 CRs 数量。我们为 CR 系统中使用的任何探测器提供了通用解决方案。与传统方案相比,所提出的方案显示出更优越的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Networking Letters Author Guidelines IEEE COMMUNICATIONS SOCIETY IEEE Communications Society Optimal Classifier for an ML-Assisted Resource Allocation in Wireless Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1