T. Solovyev, Dzheykhun Soltanov, Artem Galimzyanov, Konstantin Naydenskiy, M. Nukhaev, I. Mukhametshin
{"title":"Successful Application of the Intelligent Inflow Tracers for Monitoring of Horizontal Wells on North Komsomolskoe Field","authors":"T. Solovyev, Dzheykhun Soltanov, Artem Galimzyanov, Konstantin Naydenskiy, M. Nukhaev, I. Mukhametshin","doi":"10.2118/196831-ms","DOIUrl":null,"url":null,"abstract":"\n Most of the new oil fields in Western Siberia have unfavorable conditions for field development such as excessive gas cap presents, oil rims and active water aquifer. The North-Komsomolskoe oilfield is also characterized by poor consolidated sandstone and high viscous oil. Different types of reservoir completion (ICD, ACID, AICV) have been decided to trial test for this field in order to mitigate early water or gas breakthrough along the long horizontal well. During this trial testing of the optimum type of lower completion, the continuous well monitoring is required; clean-up efficiency estimation after drilling, quantitative estimation of inflow per compartment along the wellbore and localization of water or gas breakthrough. Traditional well logging methods like production logging cannot always be easily applied technically and be cost-effective for many surveys during well life. This article presents the result of using a novel technology based on chemical tracer for continuous well monitoring.\n Polymer matrix with chemical markers for oil and water have been integrated into different types of lower completion (ICD, AICD, Stand Along Screen) and run into the hole as a part of liner string. Technology of intelligent chemical tracers is used to monitor well performance over a long period of well life, which allows to obtain the following information: effectiveness of clean up operation after drilling, inflow per compartment and water/gas breakthrough localization zone. To confirm interpretation results based on chemical tracer, the traditional method (production logging) was used to measure inflow along the wellbore and compare with result from tracer survey.","PeriodicalId":10977,"journal":{"name":"Day 2 Wed, October 23, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 23, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196831-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Most of the new oil fields in Western Siberia have unfavorable conditions for field development such as excessive gas cap presents, oil rims and active water aquifer. The North-Komsomolskoe oilfield is also characterized by poor consolidated sandstone and high viscous oil. Different types of reservoir completion (ICD, ACID, AICV) have been decided to trial test for this field in order to mitigate early water or gas breakthrough along the long horizontal well. During this trial testing of the optimum type of lower completion, the continuous well monitoring is required; clean-up efficiency estimation after drilling, quantitative estimation of inflow per compartment along the wellbore and localization of water or gas breakthrough. Traditional well logging methods like production logging cannot always be easily applied technically and be cost-effective for many surveys during well life. This article presents the result of using a novel technology based on chemical tracer for continuous well monitoring.
Polymer matrix with chemical markers for oil and water have been integrated into different types of lower completion (ICD, AICD, Stand Along Screen) and run into the hole as a part of liner string. Technology of intelligent chemical tracers is used to monitor well performance over a long period of well life, which allows to obtain the following information: effectiveness of clean up operation after drilling, inflow per compartment and water/gas breakthrough localization zone. To confirm interpretation results based on chemical tracer, the traditional method (production logging) was used to measure inflow along the wellbore and compare with result from tracer survey.