Generating a Condensed Representation for Positive and Negative Association Rules A Condensed Representation for Association Rules

IF 7.4 3区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Business & Information Systems Engineering Pub Date : 2021-01-01 DOI:10.52825/bis.v1i.40
Parfait Bemarisika, André Totohasina
{"title":"Generating a Condensed Representation for Positive and Negative Association Rules A Condensed Representation for Association Rules","authors":"Parfait Bemarisika, André Totohasina","doi":"10.52825/bis.v1i.40","DOIUrl":null,"url":null,"abstract":"Given a large collection of transactions containing items, a basic common association rules problem is the huge size of the extracted rule set. Pruning uninteresting and redundant association rules is a promising approach to solve this problem. In this paper, we propose a Condensed Representation for Positive and Negative Association Rules representing non-redundant rules for both exact and approximate association rules based on the sets of frequent generator itemsets, frequent closed itemsets, maximal frequent itemsets, and minimal infrequent itemsets in database B. Experiments on dense (highly-correlated) databases show a significant reduction of the size of extracted association rule set in database B.","PeriodicalId":56020,"journal":{"name":"Business & Information Systems Engineering","volume":"178 1","pages":"175-186"},"PeriodicalIF":7.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business & Information Systems Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.52825/bis.v1i.40","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Given a large collection of transactions containing items, a basic common association rules problem is the huge size of the extracted rule set. Pruning uninteresting and redundant association rules is a promising approach to solve this problem. In this paper, we propose a Condensed Representation for Positive and Negative Association Rules representing non-redundant rules for both exact and approximate association rules based on the sets of frequent generator itemsets, frequent closed itemsets, maximal frequent itemsets, and minimal infrequent itemsets in database B. Experiments on dense (highly-correlated) databases show a significant reduction of the size of extracted association rule set in database B.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成正关联规则和负关联规则的精简表示
给定包含项目的大量事务集合,一个基本的常见关联规则问题是提取的规则集的规模太大。对无兴趣和冗余的关联规则进行修剪是解决这一问题的一种很有前途的方法。在本文中,我们基于数据库B中的频繁生成项集、频繁封闭项集、最大频繁项集和最小不频繁项集的集合,提出了一种表示精确和近似关联规则的非冗余规则的正负关联规则的精简表示。在密集(高相关)数据库上的实验表明,数据库B中提取的关联规则集的大小显著减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Business & Information Systems Engineering
Business & Information Systems Engineering Computer Science-Information Systems
CiteScore
13.60
自引率
7.60%
发文量
44
审稿时长
3 months
期刊介绍: Business & Information Systems Engineering (BISE) is a double-blind peer-reviewed journal with a primary focus on the design and utilization of information systems for social welfare. The journal aims to contribute to the understanding and advancement of information systems in ways that benefit societal well-being.
期刊最新文献
The Design of Citizen-Centric Green IS in Sustainable Smart Districts A Maturity Model for Assessing the Digitalization of Public Health Agencies IT Professionals in the Gig Economy A Reference System Architecture with Data Sovereignty for Human-Centric Data Ecosystems Analyzing Medical Data with Process Mining: a COVID-19 Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1