G. Vishnyakov, A. Yurin, V. Minaev, Alexander Golopolosov
{"title":"Analysis of the accuracy of the signal processing algorithm of the differential phase polarimeter","authors":"G. Vishnyakov, A. Yurin, V. Minaev, Alexander Golopolosov","doi":"10.18500/0869-6632-003047","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to analyze the effect of the polarimeter signal processing algorithm on the results of measurements of the optical rotation angle of the polarization plane to improve the accuracy of measurements in differential polarimetry. Methods. The paper considers the methods of polarimetry used for the analysis of optically active substances, based on the methods of phase measurements used to calculate the optical rotation angle. The expediency of using the Fourier transform to calculate the phase difference of differential polarimeter signals is noted. To analyze the error of the algorithm, mathematical modeling of the measurement information processing for various signal parameters is applied. Results. The results of the study of the effect of the bit depth of the analog-to-digital converter, the number of samples over the period of the signal and the accumulation time on the accuracy of restoring the phase difference are presented. The influence of the ratio of signal amplitudes and the level of amplitude and phase noise caused by the imperfection of the measuring system has also been investigated. Conclusion. The obtained results make it possible to optimize the operating mode and improve the accuracy of the optical rotation angle measurements using a differential phase polarimeter based on the Fourier transform.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"33 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this work is to analyze the effect of the polarimeter signal processing algorithm on the results of measurements of the optical rotation angle of the polarization plane to improve the accuracy of measurements in differential polarimetry. Methods. The paper considers the methods of polarimetry used for the analysis of optically active substances, based on the methods of phase measurements used to calculate the optical rotation angle. The expediency of using the Fourier transform to calculate the phase difference of differential polarimeter signals is noted. To analyze the error of the algorithm, mathematical modeling of the measurement information processing for various signal parameters is applied. Results. The results of the study of the effect of the bit depth of the analog-to-digital converter, the number of samples over the period of the signal and the accumulation time on the accuracy of restoring the phase difference are presented. The influence of the ratio of signal amplitudes and the level of amplitude and phase noise caused by the imperfection of the measuring system has also been investigated. Conclusion. The obtained results make it possible to optimize the operating mode and improve the accuracy of the optical rotation angle measurements using a differential phase polarimeter based on the Fourier transform.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.