Biruk Alemu, K. Tesfaye, T. Haileselassie, D. Lule
{"title":"Broad sense heritability and genetic advance for grain yield and yield components of chickpea (Cicer arietinum L.) genotypes in western Ethiopia","authors":"Biruk Alemu, K. Tesfaye, T. Haileselassie, D. Lule","doi":"10.5897/IJGMB2017.0158","DOIUrl":null,"url":null,"abstract":"Genetic variability is a prerequisite to crop improvement. The objective of the present study was to assess and quantify the genetic variability, estimate heritability and genetic advance for yield and yield contributing characters of released and pipeline chickpea varieties based on agro- morphological traits. A total of 16 chickpea materials (8 improved varieties, 7 advanced lines, and one local check) were planted in Randomized Complete Block Design (RCBD) with three replications at Shambu, Hawa Galan, Mata, Alaku Belle, and Badesso, in Western Ethiopia. Important agronomic data were collected and subjected to analysis using statistical analysis software (SAS). The combined analysis of variance (ANOVA) indicated highly significant differences (P≤0.01) among chickpea genotypes for grain yield and other agronomic traits except for number of seed per pod and branch per plant, indicating the existence of ample genetic variability among present chickpea genotypes. Genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) for the character such as grain filling duration, days to flowering and hundred seed weight, showed very small difference demonstrating that the observed variations for these traits were mostly due to genetic factors with little impact of environment. The higher heritability coupled with higher genetic advance was noted for 100 seed weight, number of pods per plant, number of seed per pod and grain yield signifying the ease of phenotype-based selection for the improvement of those traits. \n \n \n \n Key words: Chickpea (Cicer airetinum L.), genetic variability, phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV), selection.","PeriodicalId":88902,"journal":{"name":"International journal of genetics and molecular biology","volume":"35 1","pages":"21-25"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of genetics and molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/IJGMB2017.0158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Genetic variability is a prerequisite to crop improvement. The objective of the present study was to assess and quantify the genetic variability, estimate heritability and genetic advance for yield and yield contributing characters of released and pipeline chickpea varieties based on agro- morphological traits. A total of 16 chickpea materials (8 improved varieties, 7 advanced lines, and one local check) were planted in Randomized Complete Block Design (RCBD) with three replications at Shambu, Hawa Galan, Mata, Alaku Belle, and Badesso, in Western Ethiopia. Important agronomic data were collected and subjected to analysis using statistical analysis software (SAS). The combined analysis of variance (ANOVA) indicated highly significant differences (P≤0.01) among chickpea genotypes for grain yield and other agronomic traits except for number of seed per pod and branch per plant, indicating the existence of ample genetic variability among present chickpea genotypes. Genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) for the character such as grain filling duration, days to flowering and hundred seed weight, showed very small difference demonstrating that the observed variations for these traits were mostly due to genetic factors with little impact of environment. The higher heritability coupled with higher genetic advance was noted for 100 seed weight, number of pods per plant, number of seed per pod and grain yield signifying the ease of phenotype-based selection for the improvement of those traits.
Key words: Chickpea (Cicer airetinum L.), genetic variability, phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV), selection.