{"title":"Two image quality assessment methods based on evidential modeling and uncertainty: application to automatic iris identification systems","authors":"Amina Kchaou, Sonda Ammar Bouhamed","doi":"10.1080/1206212X.2022.2162671","DOIUrl":null,"url":null,"abstract":"The performance of an Automatic iris Identification System is impacted by both the poor quality of iris images and the uncertainty of information. Assessing image quality and rejecting poor-quality images can substantially improve the performances of the current biometric systems. The main idea behind our proposed Image Quality Assessment approaches is to take advantage, firstly, of the texture of iris images and, secondly, of the uncertainty of these information. This is achieved by defining a set of Contextual Quality Indicators extracted from the image texture and transforming them into Quality Assessment Criteria in the evidential framework, taking into account the information uncertainty degree. The Contextual Quality Indicators are defined based on a priori analysis of the context of the application. We use ‘iris’ as the context of application. Generally, only the normalized iris image is saved, i.e. the acquired iris image is not always available. So, the main advantage of our approaches over other related methods is that it can act in the normalization level of the processing chain to reject poor-quality images. So that, the subsequent Automatic iris Identification System can process only good-quality images, which result in better recognition rate performance. The functioning of our evidential approaches is illustrated using image samples from CASIA 1.0 database. The performance of over the proposed image quality assessment approaches is compared with the standard iris identification system without an image quality assessment step. A statistical test, based on 95% confidence interval, is used to assess if there is a statistically significant difference between the performances of the proposed approaches. The CASIA 1.0 has been used to make the comparison. The comparison results highlight the effectiveness of the proposed approaches for iris domain of applications. The source code of our paper is available at https://github.com/Sonda09/IIQA","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"214 1","pages":"254 - 268"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212X.2022.2162671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
The performance of an Automatic iris Identification System is impacted by both the poor quality of iris images and the uncertainty of information. Assessing image quality and rejecting poor-quality images can substantially improve the performances of the current biometric systems. The main idea behind our proposed Image Quality Assessment approaches is to take advantage, firstly, of the texture of iris images and, secondly, of the uncertainty of these information. This is achieved by defining a set of Contextual Quality Indicators extracted from the image texture and transforming them into Quality Assessment Criteria in the evidential framework, taking into account the information uncertainty degree. The Contextual Quality Indicators are defined based on a priori analysis of the context of the application. We use ‘iris’ as the context of application. Generally, only the normalized iris image is saved, i.e. the acquired iris image is not always available. So, the main advantage of our approaches over other related methods is that it can act in the normalization level of the processing chain to reject poor-quality images. So that, the subsequent Automatic iris Identification System can process only good-quality images, which result in better recognition rate performance. The functioning of our evidential approaches is illustrated using image samples from CASIA 1.0 database. The performance of over the proposed image quality assessment approaches is compared with the standard iris identification system without an image quality assessment step. A statistical test, based on 95% confidence interval, is used to assess if there is a statistically significant difference between the performances of the proposed approaches. The CASIA 1.0 has been used to make the comparison. The comparison results highlight the effectiveness of the proposed approaches for iris domain of applications. The source code of our paper is available at https://github.com/Sonda09/IIQA
期刊介绍:
The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.