Feature Selection with Weighted Ensemble Ranking for Improved Classification Performance on the CSE-CIC-IDS2018 Dataset

Comput. Pub Date : 2023-07-25 DOI:10.3390/computers12080147
László Göcs, Z. Johanyák
{"title":"Feature Selection with Weighted Ensemble Ranking for Improved Classification Performance on the CSE-CIC-IDS2018 Dataset","authors":"László Göcs, Z. Johanyák","doi":"10.3390/computers12080147","DOIUrl":null,"url":null,"abstract":"Feature selection is a crucial step in machine learning, aiming to identify the most relevant features in high-dimensional data in order to reduce the computational complexity of model development and improve generalization performance. Ensemble feature-ranking methods combine the results of several feature-selection techniques to identify a subset of the most relevant features for a given task. In many cases, they produce a more comprehensive ranking of features than the individual methods used alone. This paper presents a novel approach to ensemble feature ranking, which uses a weighted average of the individual ranking scores calculated using these individual methods. The optimal weights are determined using a Taguchi-type design of experiments. The proposed methodology significantly improves classification performance on the CSE-CIC-IDS2018 dataset, particularly for attack types where traditional average-based feature-ranking score combinations result in low classification metrics.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"29 1","pages":"147"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12080147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature selection is a crucial step in machine learning, aiming to identify the most relevant features in high-dimensional data in order to reduce the computational complexity of model development and improve generalization performance. Ensemble feature-ranking methods combine the results of several feature-selection techniques to identify a subset of the most relevant features for a given task. In many cases, they produce a more comprehensive ranking of features than the individual methods used alone. This paper presents a novel approach to ensemble feature ranking, which uses a weighted average of the individual ranking scores calculated using these individual methods. The optimal weights are determined using a Taguchi-type design of experiments. The proposed methodology significantly improves classification performance on the CSE-CIC-IDS2018 dataset, particularly for attack types where traditional average-based feature-ranking score combinations result in low classification metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加权集成排序的特征选择提高CSE-CIC-IDS2018数据集的分类性能
特征选择是机器学习的关键步骤,旨在识别高维数据中最相关的特征,以降低模型开发的计算复杂度,提高泛化性能。集成特征排序方法将几种特征选择技术的结果结合起来,为给定任务识别最相关的特征子集。在许多情况下,它们比单独使用的单个方法产生更全面的特征排序。本文提出了一种新的集成特征排序方法,该方法使用由这些单个方法计算的单个排序分数的加权平均值。采用田口式实验设计确定了最优权重。提出的方法显著提高了CSE-CIC-IDS2018数据集的分类性能,特别是对于传统基于平均的特征排名分数组合导致分类指标较低的攻击类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A U-Net Architecture for Inpainting Lightstage Normal Maps Implementing Virtualization on Single-Board Computers: A Case Study on Edge Computing Electrocardiogram Signals Classification Using Deep-Learning-Based Incorporated Convolutional Neural Network and Long Short-Term Memory Framework The Mechanism of Resonant Amplification of One-Dimensional Detonation Propagating in a Non-Uniform Mixture Application of Immersive VR Serious Games in the Treatment of Schizophrenia Negative Symptoms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1