Sensitivity analysis of the hygrothermal behaviour of homogeneous masonry constructions: Interior insulation, rainwater infiltration and hydrophobic treatment
{"title":"Sensitivity analysis of the hygrothermal behaviour of homogeneous masonry constructions: Interior insulation, rainwater infiltration and hydrophobic treatment","authors":"Klaas Calle, N. Van Den Bossche","doi":"10.1177/17442591211009937","DOIUrl":null,"url":null,"abstract":"Historical masonry constructions are difficult to mimic in hygrothermal models. The material properties of the walls are often highly uncertain due to the natural origin of the aggregates and the various, manual production processes used through time. Therefore, sensitivity analyses based on probabilistic simulations are powerful tools to indicate the risks on damage in masonry constructions. Damage criteria for relevant pathologies such as frost damage, potential decay of wooden beam heads and mould growth at the interior surface are used. The assessment methods (Scatter plots, Classification trees and Sobol indices) are based on 1D Heat, Air and Moisture simulations, including realistic variations on climate parameters and wall properties. These methodologies are applied to probabilistic simulations in which a potential damage risk is expected in historic masonries. The application of interior insulation, the use of hydrophobic treatments, and the impact of potential water infiltrations through cracks are discussed. In most of these situations a high dependency of each of the damage criteria on the rain intensity, the trend of the moisture retention/liquid conductivity curve and the absorption coefficient is evident, but also additional insights are found. For example, the thermal impact of interior insulation is negligible compared to its reduction of the first phase drying potential towards the interior. For hydrophobic treatments, the risk for damage typically decreases, but in combination with a rain water infiltration rate above approximately 5% of the wind driven rain the risk on mould growth at the interior surface significantly increases.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"9 1","pages":"510 - 538"},"PeriodicalIF":1.8000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Physics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17442591211009937","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 11
Abstract
Historical masonry constructions are difficult to mimic in hygrothermal models. The material properties of the walls are often highly uncertain due to the natural origin of the aggregates and the various, manual production processes used through time. Therefore, sensitivity analyses based on probabilistic simulations are powerful tools to indicate the risks on damage in masonry constructions. Damage criteria for relevant pathologies such as frost damage, potential decay of wooden beam heads and mould growth at the interior surface are used. The assessment methods (Scatter plots, Classification trees and Sobol indices) are based on 1D Heat, Air and Moisture simulations, including realistic variations on climate parameters and wall properties. These methodologies are applied to probabilistic simulations in which a potential damage risk is expected in historic masonries. The application of interior insulation, the use of hydrophobic treatments, and the impact of potential water infiltrations through cracks are discussed. In most of these situations a high dependency of each of the damage criteria on the rain intensity, the trend of the moisture retention/liquid conductivity curve and the absorption coefficient is evident, but also additional insights are found. For example, the thermal impact of interior insulation is negligible compared to its reduction of the first phase drying potential towards the interior. For hydrophobic treatments, the risk for damage typically decreases, but in combination with a rain water infiltration rate above approximately 5% of the wind driven rain the risk on mould growth at the interior surface significantly increases.
期刊介绍:
Journal of Building Physics (J. Bldg. Phys) is an international, peer-reviewed journal that publishes a high quality research and state of the art “integrated” papers to promote scientifically thorough advancement of all the areas of non-structural performance of a building and particularly in heat, air, moisture transfer.