Michael Hay, Ashwin Machanavajjhala, G. Miklau, Yan Chen, Dan Zhang, G. Bissias
{"title":"Exploring Privacy-Accuracy Tradeoffs using DPComp","authors":"Michael Hay, Ashwin Machanavajjhala, G. Miklau, Yan Chen, Dan Zhang, G. Bissias","doi":"10.1145/2882903.2899387","DOIUrl":null,"url":null,"abstract":"The emergence of differential privacy as a primary standard for privacy protection has led to the development, by the research community, of hundreds of algorithms for various data analysis tasks. Yet deployment of these techniques has been slowed by the complexity of algorithms and an incomplete understanding of the cost to accuracy implied by the adoption of differential privacy. In this demonstration we present DPComp, a publicly-accessible web-based system, designed to support a broad community of users, including data analysts, privacy researchers, and data owners. Users can use DPComp to assess the accuracy of state-of-the-art privacy algorithms and interactively explore algorithm output in order to understand, both quantitatively and qualitatively, the error introduced by the algorithms. In addition, users can contribute new algorithms and new (non-sensitive) datasets. DPComp automatically incorporates user contributions into an evolving benchmark based on a rigorous evaluation methodology articulated by Hay et al. (SIGMOD 2016).","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2899387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
The emergence of differential privacy as a primary standard for privacy protection has led to the development, by the research community, of hundreds of algorithms for various data analysis tasks. Yet deployment of these techniques has been slowed by the complexity of algorithms and an incomplete understanding of the cost to accuracy implied by the adoption of differential privacy. In this demonstration we present DPComp, a publicly-accessible web-based system, designed to support a broad community of users, including data analysts, privacy researchers, and data owners. Users can use DPComp to assess the accuracy of state-of-the-art privacy algorithms and interactively explore algorithm output in order to understand, both quantitatively and qualitatively, the error introduced by the algorithms. In addition, users can contribute new algorithms and new (non-sensitive) datasets. DPComp automatically incorporates user contributions into an evolving benchmark based on a rigorous evaluation methodology articulated by Hay et al. (SIGMOD 2016).