{"title":"Hypersonic dynamic stability of wave riders","authors":"M. Khalid, K. Juhany","doi":"10.1108/AEAT-09-2015-0218","DOIUrl":null,"url":null,"abstract":"Purpose \n \n \n \n \nThe purpose of this paper is to obtain close form expressions for the dynamic stability of conical wave riders with flat surfaces which could be equipped with lifting surfaces on its plain flat surface. Numerical simulation would require very large meshes to resolve flows at subscale level and the experimental evaluations would be equally difficult, requiring expensive measurement facilities with challenging procedures to secure such vehicles in confined test sections to obtain satisfactory wind on and wind off oscillations. \n \n \n \n \nDesign/methodology/approach \n \n \n \n \nThe design method uses appropriate pressure fields using small disturbance theory, which, in turn, is perturbed using the unsteady shock expansion theory to recover suitable expressions for the dynamic stability behaviour. \n \n \n \n \nFindings \n \n \n \n \nIt was observed that the dynamic stability of the standard half-cone-type wave riders with flat upper surfaces deteriorates with the axis position measured from the pointed apex reaching a minimum at around x/co = 0.666. The half-cone wave rider with flat upper surfaces is dynamically less stable than a pure cone. \n \n \n \n \nResearch limitations/implications \n \n \n \n \nThe method is typically less accurate when the similarity parameter M∞θ ≤ 1 = 1 or if the angle of attack is not small. \n \n \n \n \nPractical implications \n \n \n \n \nWith renewed interest in hypersonic, future hypersonically would be designed as fast lifting bodies whose shapes would be close to the configurations of hypersonic wave riders, especially if they are designed to operate at upper atmosphere altitudes. \n \n \n \n \nOriginality/value \n \n \n \n \nThe analytic approach outlined in this paper for the evaluation of dynamic and static stability derivatives is original, drawing from the strengths of the small disturbance theory and shock expansion techniques. The method is particularly important, as there are no reported theoretical, numerical or experimental results in the literature.","PeriodicalId":55540,"journal":{"name":"Aircraft Engineering and Aerospace Technology","volume":"45 1","pages":"434-443"},"PeriodicalIF":1.2000,"publicationDate":"2017-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aircraft Engineering and Aerospace Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/AEAT-09-2015-0218","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this paper is to obtain close form expressions for the dynamic stability of conical wave riders with flat surfaces which could be equipped with lifting surfaces on its plain flat surface. Numerical simulation would require very large meshes to resolve flows at subscale level and the experimental evaluations would be equally difficult, requiring expensive measurement facilities with challenging procedures to secure such vehicles in confined test sections to obtain satisfactory wind on and wind off oscillations.
Design/methodology/approach
The design method uses appropriate pressure fields using small disturbance theory, which, in turn, is perturbed using the unsteady shock expansion theory to recover suitable expressions for the dynamic stability behaviour.
Findings
It was observed that the dynamic stability of the standard half-cone-type wave riders with flat upper surfaces deteriorates with the axis position measured from the pointed apex reaching a minimum at around x/co = 0.666. The half-cone wave rider with flat upper surfaces is dynamically less stable than a pure cone.
Research limitations/implications
The method is typically less accurate when the similarity parameter M∞θ ≤ 1 = 1 or if the angle of attack is not small.
Practical implications
With renewed interest in hypersonic, future hypersonically would be designed as fast lifting bodies whose shapes would be close to the configurations of hypersonic wave riders, especially if they are designed to operate at upper atmosphere altitudes.
Originality/value
The analytic approach outlined in this paper for the evaluation of dynamic and static stability derivatives is original, drawing from the strengths of the small disturbance theory and shock expansion techniques. The method is particularly important, as there are no reported theoretical, numerical or experimental results in the literature.
期刊介绍:
Aircraft Engineering and Aerospace Technology provides a broad coverage of the materials and techniques employed in the aircraft and aerospace industry. Its international perspectives allow readers to keep up to date with current thinking and developments in critical areas such as coping with increasingly overcrowded airways, the development of new materials, recent breakthroughs in navigation technology - and more.