{"title":"An Opportunistic Charger Recollection Algorithm for Wireless Rechargeable Sensor Networks","authors":"Ronglin Hu, Xiaomin Chen, Chengjie Xu","doi":"10.4018/ijghpc.316151","DOIUrl":null,"url":null,"abstract":"Wireless rechargeable sensor networks (WRSNs) have received a lot of attention due to the development of wireless charging technology. Recently, a new solution of wireless charging vehicle (WCV) for WRSNs with separable charger array equipped with multiple chargers was suggested. By this method, each charger can be unloaded to serve one sensor, while the WCV can work in a very efficient way because it needs not to stay on site and can continue to perform its assigned task. But this solution created a new problem that is how to recollect these chargers for reusing when their charging services are finished. In previous research, however, the recollecting strategy has seldom been considered. In this work, an effectively opportunistic charger recollection algorithm (OCRA) are proposed. Simulation results indicate that OCRA has outperformed previous algorithms in many aspects.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"70 1","pages":"1-21"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.316151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless rechargeable sensor networks (WRSNs) have received a lot of attention due to the development of wireless charging technology. Recently, a new solution of wireless charging vehicle (WCV) for WRSNs with separable charger array equipped with multiple chargers was suggested. By this method, each charger can be unloaded to serve one sensor, while the WCV can work in a very efficient way because it needs not to stay on site and can continue to perform its assigned task. But this solution created a new problem that is how to recollect these chargers for reusing when their charging services are finished. In previous research, however, the recollecting strategy has seldom been considered. In this work, an effectively opportunistic charger recollection algorithm (OCRA) are proposed. Simulation results indicate that OCRA has outperformed previous algorithms in many aspects.