Diagnostics in categorical data analysis

E. Andersen
{"title":"Diagnostics in categorical data analysis","authors":"E. Andersen","doi":"10.1111/J.2517-6161.1992.TB01451.X","DOIUrl":null,"url":null,"abstract":"Diagnostics as measures of model deviations and of the influence of particular data sets are used extensively in modern regression analysis. For contingency tables, and more generally for the parametric multinomial distribution, it is not the influence of individual observations which is of interest, but rather the contribution to a lack of model fit or to the values of the parameter estimates from a single cell in the table, which must be evaluated. Hence diagnostics for contingency tables take somewhat different forms","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"104 1","pages":"781-791"},"PeriodicalIF":0.0000,"publicationDate":"1992-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1992.TB01451.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Diagnostics as measures of model deviations and of the influence of particular data sets are used extensively in modern regression analysis. For contingency tables, and more generally for the parametric multinomial distribution, it is not the influence of individual observations which is of interest, but rather the contribution to a lack of model fit or to the values of the parameter estimates from a single cell in the table, which must be evaluated. Hence diagnostics for contingency tables take somewhat different forms
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分类数据分析中的诊断
诊断作为模型偏差和特定数据集影响的度量,在现代回归分析中被广泛使用。对于列联表,更一般地说,对于参数多项分布,我们感兴趣的不是单个观测值的影响,而是对缺乏模型拟合的贡献或对表中单个单元的参数估计值的贡献,这一点必须进行评估。因此列联表的诊断采用了不同的形式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposal of the vote of thanks in discussion of Cule, M., Samworth, R., and Stewart, M.: Maximum likelihood estimation of a multidimensional logconcave density On Assessing goodness of fit of generalized linear models to sparse data Bayes Linear Sufficiency and Systems of Expert Posterior Assessments On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods Quasi‐Likelihood and Generalizing the Em Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1