DeepXScope: Segmenting Microscopy Images with a Deep Neural Network

Philip Saponaro, Wayne Treible, Abhishek Kolagunda, Timothy Chaya, J. Caplan, C. Kambhamettu, R. Wisser
{"title":"DeepXScope: Segmenting Microscopy Images with a Deep Neural Network","authors":"Philip Saponaro, Wayne Treible, Abhishek Kolagunda, Timothy Chaya, J. Caplan, C. Kambhamettu, R. Wisser","doi":"10.1109/CVPRW.2017.117","DOIUrl":null,"url":null,"abstract":"High-speed confocal microscopy has shown great promise to yield insights into plant-fungal interactions by allowing for large volumes of leaf tissue to be imaged at high magnification. Currently, segmentation is performed either manually, which is infeasible for large amounts of data, or by developing separate algorithms to extract individual features within the image data. In this work, we propose the use of a single deep convolutional neural network architecture dubbed DeepXScope for automatically segmenting hyphal networks of the fungal pathogen and cell boundaries and stomata of the host plant. DeepXScope is trained on manually annotated images created for each of these structures. We describe experiments that show each individual structure can be accurately extracted automatically using DeepXScope. We anticipate that plant scientists will be able to use this network to automatically extract multiple structures of interest, and we plan to release our tool to the community1.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"2014 1","pages":"843-850"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

High-speed confocal microscopy has shown great promise to yield insights into plant-fungal interactions by allowing for large volumes of leaf tissue to be imaged at high magnification. Currently, segmentation is performed either manually, which is infeasible for large amounts of data, or by developing separate algorithms to extract individual features within the image data. In this work, we propose the use of a single deep convolutional neural network architecture dubbed DeepXScope for automatically segmenting hyphal networks of the fungal pathogen and cell boundaries and stomata of the host plant. DeepXScope is trained on manually annotated images created for each of these structures. We describe experiments that show each individual structure can be accurately extracted automatically using DeepXScope. We anticipate that plant scientists will be able to use this network to automatically extract multiple structures of interest, and we plan to release our tool to the community1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepXScope:用深度神经网络分割显微镜图像
高速共聚焦显微镜已经显示出巨大的希望,通过允许在高倍率下对大量的叶片组织进行成像,可以深入了解植物与真菌的相互作用。目前,分割要么是手动执行的,这对于大量数据是不可行的,要么是通过开发单独的算法来提取图像数据中的单个特征。在这项工作中,我们提出使用一个称为DeepXScope的单一深度卷积神经网络架构来自动分割真菌病原体的菌丝网络和寄主植物的细胞边界和气孔。DeepXScope是在为这些结构创建的手动注释图像上进行训练的。我们描述的实验表明,使用DeepXScope可以准确地自动提取每个单独的结构。我们预计植物科学家将能够使用该网络自动提取多种感兴趣的结构,并且我们计划向社区发布我们的工具1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Energy Expenditure in Sports by Thermal Video Analysis Court-Based Volleyball Video Summarization Focusing on Rally Scene Generating 5D Light Fields in Scattering Media for Representing 3D Images Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1