Adaptive Reduced-Dimensional Beamspace Beamformer Design by Analogue Beam Selection

Xiangrong Wang, E. Aboutanios
{"title":"Adaptive Reduced-Dimensional Beamspace Beamformer Design by Analogue Beam Selection","authors":"Xiangrong Wang, E. Aboutanios","doi":"10.1109/ICASSP.2019.8683360","DOIUrl":null,"url":null,"abstract":"Adaptive beamforming of large antenna arrays is difficult to implement due to prohibitively high hardware cost and computational complexity. An antenna selection strategy was utilized to maximize the output signal-to-interference-plus- noise ratio (SINR) with fewer antennas by optimizing array configurations. However, antenna selection scheme exhibits high degradation in performance compared to the full array system. In this paper, we consider a reduced-dimensional beamspace beamformer, where analogue phase shifters adaptively synthesize a subset of orthogonal beams whose outputs are then processed in a beamspace beamformer. We examine the selection problem to adaptively identify the beams most relevant to achieving almost the full beamspace performance, especially in the generalized case without any prior information. Simulation results demonstrated that the beam selection enjoys the complexity advantages, while simultaneously enhancing the output SINR of antenna selection.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"8 1","pages":"4350-4354"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Adaptive beamforming of large antenna arrays is difficult to implement due to prohibitively high hardware cost and computational complexity. An antenna selection strategy was utilized to maximize the output signal-to-interference-plus- noise ratio (SINR) with fewer antennas by optimizing array configurations. However, antenna selection scheme exhibits high degradation in performance compared to the full array system. In this paper, we consider a reduced-dimensional beamspace beamformer, where analogue phase shifters adaptively synthesize a subset of orthogonal beams whose outputs are then processed in a beamspace beamformer. We examine the selection problem to adaptively identify the beams most relevant to achieving almost the full beamspace performance, especially in the generalized case without any prior information. Simulation results demonstrated that the beam selection enjoys the complexity advantages, while simultaneously enhancing the output SINR of antenna selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模拟波束选择的自适应降维波束空间波束形成器设计
大型天线阵列的自适应波束形成由于其高昂的硬件成本和计算复杂度而难以实现。采用天线选择策略,通过优化阵列配置,在天线数量较少的情况下最大限度地提高输出信噪比。然而,与全阵列系统相比,天线选择方案表现出较高的性能退化。在本文中,我们考虑了一种降维波束空间波束形成器,其中模拟移相器自适应合成正交波束的子集,然后在波束空间波束形成器中对其输出进行处理。我们研究了选择问题,以自适应地识别与实现几乎全波束空间性能最相关的波束,特别是在没有任何先验信息的广义情况下。仿真结果表明,波束选择具有复杂性优势,同时提高了天线选择的输出信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1