M. Kruk, T. Vibel, J. Arlt, P. Kulik, K. Pawłowski, K. Rzka.zewski
{"title":"Fock State Sampling Method - Characteristic Temperature of Maximal Fluctuations for Interacting Bosons in Box Potentials","authors":"M. Kruk, T. Vibel, J. Arlt, P. Kulik, K. Pawłowski, K. Rzka.zewski","doi":"10.12693/APhysPolA.143.S171","DOIUrl":null,"url":null,"abstract":"We study the statistical properties of a gas of interacting bosons trapped in a box potential in two and three dimensions. Our primary focus is the characteristic temperature $\\tchar$, i.e. the temperature at which the fluctuations of the number of condensed atoms (or, in 2D, the number of motionless atoms) is maximal. Using the Fock State Sampling method, we show that $\\tchar$ increases due to interaction. In 3D, this temperature converges to the critical temperature in the thermodynamic limit. In 2D we show the general applicability of the method by obtaining a generalized dependence of the characteristic temperature on the interaction strength. Finally, we discuss the experimental conditions necessary for the verification of our theoretical predictions.","PeriodicalId":7164,"journal":{"name":"Acta Physica Polonica A","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Polonica A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.12693/APhysPolA.143.S171","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the statistical properties of a gas of interacting bosons trapped in a box potential in two and three dimensions. Our primary focus is the characteristic temperature $\tchar$, i.e. the temperature at which the fluctuations of the number of condensed atoms (or, in 2D, the number of motionless atoms) is maximal. Using the Fock State Sampling method, we show that $\tchar$ increases due to interaction. In 3D, this temperature converges to the critical temperature in the thermodynamic limit. In 2D we show the general applicability of the method by obtaining a generalized dependence of the characteristic temperature on the interaction strength. Finally, we discuss the experimental conditions necessary for the verification of our theoretical predictions.
期刊介绍:
Contributions which report original research results
and reviews in the fields of General Physics, Atomic and
Molecular Physics, Optics and Quantum Optics, Quantum Information, Biophysics, Condensed Matter, and
Applied Physics are welcomed.