{"title":"Simulated Annealing – 2 Opt Algorithm for Solving Traveling Salesman Problem","authors":"P. H. Gunawan, I. Iryanto","doi":"10.47839/ijc.22.1.2878","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to elaborate performance of the hybrid model of Simulated Annealing (SA) and 2 Opt algorithm for solving the traveling salesman problem (TSP). The SA algorithm used in this article is based on the outer and inner loop SA algorithm. The hybrid algorithm has promising results in solving small and medium-scale symmetric traveling salesman problem benchmark tests taken from the TSPLIB reference. Results of the optimal solution and standard deviation indicate that the hybrid algorithm shows good performance in terms of reliability and stability in finding the optimal solution from the TSP benchmark case. Values of average error and standard deviation for all simulations in the medium scale are 0.0267 and 644.12, respectively. Moreover, in some cases namely KroB100, Pr107, and Pr144, the hybrid algorithm finds a better solution compared with the best-known solution mentioned in the reference. Further, the hybrid algorithm is 1.207 – 5.692 times faster than the pure outer and inner loop-based SA algorithm. Additionally, the results show that the hybrid algorithm outperforms other hybrid algorithms such as SA – nearest neighbor (NN) and NN – 2 Opt.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"16 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.22.1.2878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this article is to elaborate performance of the hybrid model of Simulated Annealing (SA) and 2 Opt algorithm for solving the traveling salesman problem (TSP). The SA algorithm used in this article is based on the outer and inner loop SA algorithm. The hybrid algorithm has promising results in solving small and medium-scale symmetric traveling salesman problem benchmark tests taken from the TSPLIB reference. Results of the optimal solution and standard deviation indicate that the hybrid algorithm shows good performance in terms of reliability and stability in finding the optimal solution from the TSP benchmark case. Values of average error and standard deviation for all simulations in the medium scale are 0.0267 and 644.12, respectively. Moreover, in some cases namely KroB100, Pr107, and Pr144, the hybrid algorithm finds a better solution compared with the best-known solution mentioned in the reference. Further, the hybrid algorithm is 1.207 – 5.692 times faster than the pure outer and inner loop-based SA algorithm. Additionally, the results show that the hybrid algorithm outperforms other hybrid algorithms such as SA – nearest neighbor (NN) and NN – 2 Opt.
期刊介绍:
The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.