The importance of convexity in learning with squared loss

Wee Sun Lee, P. Bartlett, R. C. Williamson
{"title":"The importance of convexity in learning with squared loss","authors":"Wee Sun Lee, P. Bartlett, R. C. Williamson","doi":"10.1145/238061.238082","DOIUrl":null,"url":null,"abstract":"We show that if the closure of a function class under the metric induced by some probability distribution is not convex, then the sample complexity for agnostically learning with squared loss (using only hypotheses in )i s where is the probability of success and is the required accuracy. In comparison, if the class is convex and has finite pseudodimension, then the sample complexity is . If a nonconvex class has finite pseudodimension, then the sample complexity for agnostically learning the closure of the convex hull of ,i s . Hence, for agnostic learning, learning the convex hull provides better approximation capabilities with little sample complexity penalty.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"53 1","pages":"1974-1980"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/238061.238082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

Abstract

We show that if the closure of a function class under the metric induced by some probability distribution is not convex, then the sample complexity for agnostically learning with squared loss (using only hypotheses in )i s where is the probability of success and is the required accuracy. In comparison, if the class is convex and has finite pseudodimension, then the sample complexity is . If a nonconvex class has finite pseudodimension, then the sample complexity for agnostically learning the closure of the convex hull of ,i s . Hence, for agnostic learning, learning the convex hull provides better approximation capabilities with little sample complexity penalty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
凸性在平方损失学习中的重要性
我们证明,如果函数类在某些概率分布诱导的度量下的闭包不是凸的,那么具有平方损失(仅使用假设)的不可知论学习的样本复杂度为成功的概率和所需的精度。相比之下,如果类是凸的且伪维数有限,则样本复杂度为。如果非凸类具有有限的伪维数,则不可知性地学习其凸包闭包的样本复杂度为1。因此,对于不可知论学习,学习凸包提供了更好的近似能力,并且样本复杂度损失很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to "On the Separability of Parallel MISO Broadcast Channels Under Partial CSIT: A Degrees of Freedom Region Perspective" Efficiently Decoding Reed-Muller Codes From Random Errors Restricted q-Isometry Properties Adapted to Frames for Nonconvex lq-Analysis Distortion Rate Function of Sub-Nyquist Sampled Gaussian Sources ℓp-Regularized Least Squares (0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1