Autoscaling Performance Measurement Tool

Anshul Jindal, Vladimir Podolskiy, M. Gerndt
{"title":"Autoscaling Performance Measurement Tool","authors":"Anshul Jindal, Vladimir Podolskiy, M. Gerndt","doi":"10.1145/3185768.3186293","DOIUrl":null,"url":null,"abstract":"More companies are shifting focus to adding more layers of virtualization for their cloud applications thus increasing the flexibility in development, deployment and management of applications. Increase in the number of layers can result in additional overhead during autoscaling and also in coordination issues while layers may use the same resources while managed by different software. In order to capture these multilayered autoscaling performance issues, an Autoscaling Performance Measurement Tool (APMT) was developed. This tool evaluates the performance of cloud autoscaling solutions and combinations thereof for varying types of load patterns. In the paper, we highlight the architecture of the tool and its configuration. An autoscaling behavior for major IaaS providers with Kubernetes pods as the second layer of virtualization is illustrated using the data collected by APMT.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3185768.3186293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

More companies are shifting focus to adding more layers of virtualization for their cloud applications thus increasing the flexibility in development, deployment and management of applications. Increase in the number of layers can result in additional overhead during autoscaling and also in coordination issues while layers may use the same resources while managed by different software. In order to capture these multilayered autoscaling performance issues, an Autoscaling Performance Measurement Tool (APMT) was developed. This tool evaluates the performance of cloud autoscaling solutions and combinations thereof for varying types of load patterns. In the paper, we highlight the architecture of the tool and its configuration. An autoscaling behavior for major IaaS providers with Kubernetes pods as the second layer of virtualization is illustrated using the data collected by APMT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动缩放性能测量工具
越来越多的公司将注意力转移到为他们的云应用程序添加更多的虚拟化层,从而增加应用程序开发、部署和管理的灵活性。层数的增加可能会导致自动伸缩期间的额外开销,也会导致协调问题,因为层可能使用相同的资源,但由不同的软件管理。为了捕获这些多层自动缩放性能问题,开发了一个自动缩放性能测量工具(APMT)。此工具评估云自动缩放解决方案的性能及其组合,以适应不同类型的负载模式。在本文中,我们重点介绍了该工具的体系结构及其配置。使用APMT收集的数据说明了使用Kubernetes pod作为第二层虚拟化的主要IaaS提供商的自动伸缩行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sampling-based Label Propagation for Balanced Graph Partitioning ICPE '22: ACM/SPEC International Conference on Performance Engineering, Bejing, China, April 9 - 13, 2022 The Role of Analytical Models in the Engineering and Science of Computer Systems Enhancing Observability of Serverless Computing with the Serverless Application Analytics Framework Towards Elastic and Sustainable Data Stream Processing on Edge Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1