Polymerization Initiated by Graphite Intercalation Compounds Revisited: One-Pot Synthesis of Amphiphilic Pentablock Copolymers

Macromol Pub Date : 2022-05-14 DOI:10.3390/macromol2020012
N. Vladimirov, I. Gitsov
{"title":"Polymerization Initiated by Graphite Intercalation Compounds Revisited: One-Pot Synthesis of Amphiphilic Pentablock Copolymers","authors":"N. Vladimirov, I. Gitsov","doi":"10.3390/macromol2020012","DOIUrl":null,"url":null,"abstract":"This study reports the first attempt to employ a potassium–graphite intercalation compound (KC24) as an initiator for the one-pot synthesis of a multi-block copolymer. The results obtained show that KC24 successfully initiated the copolymerization, leading to a copolymer consisting of poly(styrene), poly(methyl methacrylate) and poly(ethylene oxide) blocks. When all three comonomers were introduced simultaneously or in a specific sequence, the resulting copolymers had molecular masses in the range between 170,000 Da and 280,000 Da. Their composition was investigated by size-exclusion chromatography with triple detection (dRI/UV/IR) and 1H-NMR. The analyses indicated that all copolymers were enriched in methyl methacrylate (50–66 mol%) despite the fact that the comonomers were added in equimolar amounts. Due to the layered structure of the initiator, the polymerization took place in the graphite interlayer spaces and lead to extensive delamination, indicating at the potential to produce in situ graphite/copolymer composite materials.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"126 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol2020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study reports the first attempt to employ a potassium–graphite intercalation compound (KC24) as an initiator for the one-pot synthesis of a multi-block copolymer. The results obtained show that KC24 successfully initiated the copolymerization, leading to a copolymer consisting of poly(styrene), poly(methyl methacrylate) and poly(ethylene oxide) blocks. When all three comonomers were introduced simultaneously or in a specific sequence, the resulting copolymers had molecular masses in the range between 170,000 Da and 280,000 Da. Their composition was investigated by size-exclusion chromatography with triple detection (dRI/UV/IR) and 1H-NMR. The analyses indicated that all copolymers were enriched in methyl methacrylate (50–66 mol%) despite the fact that the comonomers were added in equimolar amounts. Due to the layered structure of the initiator, the polymerization took place in the graphite interlayer spaces and lead to extensive delamination, indicating at the potential to produce in situ graphite/copolymer composite materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石墨插层化合物引发的聚合:一锅法合成两亲五嵌段共聚物
本研究首次尝试使用钾-石墨插层化合物(KC24)作为一锅合成多嵌段共聚物的引发剂。结果表明,KC24成功地引发了共聚反应,得到了由聚苯乙烯、聚甲基丙烯酸甲酯和聚环氧乙烷嵌段组成的共聚物。当所有三种共聚物同时或按特定顺序引入时,所得共聚物的分子质量在170,000 Da至280,000 Da之间。采用排样色谱法(dRI/UV/IR)和1H-NMR三重检测对其组成进行了研究。分析表明,尽管共聚物的加入量为等摩尔,但所有共聚物都富含甲基丙烯酸甲酯(50-66摩尔%)。由于引发剂的层状结构,聚合发生在石墨层间空间,并导致广泛的分层,这表明了生产原位石墨/共聚物复合材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Different Extraction Conditions on the Physicochemical Properties of Novel High Methoxyl Pectin-like Polysaccharides from Green Bell Pepper (GBP) Recyclability Perspectives of the Most Diffused Biobased and Biodegradable Plastic Materials Autoclaving Achieves pH-Neutralization, Hydrogelation, and Sterilization of Chitosan Hydrogels in One Step Effect of Tacticity on London Dispersive Surface Energy, Polar Free Energy and Lewis Acid-Base Surface Energies of Poly Methyl Methacrylate by Inverse Gas Chromatography Synthesis and Characterisation of 4D-Printed NVCL-co-DEGDA Resin Using Stereolithography 3D Printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1