A New Semiparametric Regression Framework for Analyzing Non-Linear Data

Wesley Bertoli, R. P. Oliveira, J. Achcar
{"title":"A New Semiparametric Regression Framework for Analyzing Non-Linear Data","authors":"Wesley Bertoli, R. P. Oliveira, J. Achcar","doi":"10.3390/analytics1010002","DOIUrl":null,"url":null,"abstract":"This work introduces a straightforward framework for semiparametric non-linear models as an alternative to existing non-linear parametric models, whose interpretation primarily depends on biological or physical aspects that are not always available in every practical situation. The proposed methodology does not require intensive numerical methods to obtain estimates in non-linear contexts, which is attractive as such algorithms’ convergence strongly depends on assigning good initial values. Moreover, the proposed structure can be compared with standard polynomial approximations often used for explaining non-linear data behaviors. Approximate posterior inferences for the semiparametric model parameters were obtained from a fully Bayesian approach based on the Metropolis-within-Gibbs algorithm. The proposed structures were considered to analyze artificial and real datasets. Our results indicated that the semiparametric models outperform linear polynomial regression approximations to predict the behavior of response variables in non-linear settings.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics1010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work introduces a straightforward framework for semiparametric non-linear models as an alternative to existing non-linear parametric models, whose interpretation primarily depends on biological or physical aspects that are not always available in every practical situation. The proposed methodology does not require intensive numerical methods to obtain estimates in non-linear contexts, which is attractive as such algorithms’ convergence strongly depends on assigning good initial values. Moreover, the proposed structure can be compared with standard polynomial approximations often used for explaining non-linear data behaviors. Approximate posterior inferences for the semiparametric model parameters were obtained from a fully Bayesian approach based on the Metropolis-within-Gibbs algorithm. The proposed structures were considered to analyze artificial and real datasets. Our results indicated that the semiparametric models outperform linear polynomial regression approximations to predict the behavior of response variables in non-linear settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的非线性数据分析半参数回归框架
这项工作为半参数非线性模型引入了一个简单的框架,作为现有非线性参数模型的替代方案,其解释主要取决于生物或物理方面,而这些方面在每种实际情况下并不总是可用的。所提出的方法不需要密集的数值方法来获得非线性环境下的估计,这是有吸引力的,因为这种算法的收敛性强烈依赖于分配良好的初始值。此外,所提出的结构可以与通常用于解释非线性数据行为的标准多项式近似进行比较。基于Metropolis-within-Gibbs算法的全贝叶斯方法得到了半参数模型参数的近似后验推断。所提出的结构被考虑用于分析人工数据集和真实数据集。我们的研究结果表明,半参数模型优于线性多项式回归近似来预测非线性设置下响应变量的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
A Comparative Analysis of VirLock and Bacteriophage ϕ6 through the Lens of Game Theory Can Oral Grades Predict Final Examination Scores? Case Study in a Higher Education Military Academy Relating the Ramsay Quotient Model to the Classical D-Scoring Rule An Exploration of Clustering Algorithms for Customer Segmentation in the UK Retail Market A Novel Curve Clustering Method for Functional Data: Applications to COVID-19 and Financial Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1