Glycosaminoglycans Content and Type II Collagen Localization in Chondrogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells Induced by L-Ascorbic Acid 2-Phosphate

IF 0.5 Q4 MULTIDISCIPLINARY SCIENCES Journal of Mathematical and Fundamental Sciences Pub Date : 2020-04-30 DOI:10.5614/j.math.fund.sci.2020.52.1.7
A. Barlian, N. L. W. E. Yanti
{"title":"Glycosaminoglycans Content and Type II Collagen Localization in Chondrogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells Induced by L-Ascorbic Acid 2-Phosphate","authors":"A. Barlian, N. L. W. E. Yanti","doi":"10.5614/j.math.fund.sci.2020.52.1.7","DOIUrl":null,"url":null,"abstract":"L-ascorbic acid 2-phosphate (LAA) is known to induce chondrocyte differentiation. The objective of this study was to analyze the potency of LAA in chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADSC) by analyzing the glycosaminoglycans (GAG) content and type II collagen (Coll2) localization. ADSC was characterized using flow cytometry and cultured in media containing various concentrations of LAA (0, 25, 50, 100 μg/mL) for 2, 3 and 4 weeks. Coll2 localization was analyzed by immunocytochemistry (ICC) using a confocal microscope. The quantification of GAG was performed by Alcian Blue staining and calcium deposition by Alizarin Red S staining. The results showed that ADSC was positive for mesenchymal stem cell (MSC) markers. Coll2 was localized in the cytoplasm and showed increasing abundance along with the increase of the LAA concentration. The highest intensity of Coll2 localization was shown in LAA 100 μg/mL. ADSC in LAA induction medium showed higher GAG content compared to the control group (LAA 0 μg/mL) (p < 0.05). The highest calcium deposit was shown by LAA 25 μg/mL after 4 weeks of culture (p < 0.05) and it decreased at higher concentrations. In conclusion, LAA 100 μg/mL is considered the optimum LAA concentration for chondrogenic differentiation.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":"42 1","pages":"98-111"},"PeriodicalIF":0.5000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.math.fund.sci.2020.52.1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

L-ascorbic acid 2-phosphate (LAA) is known to induce chondrocyte differentiation. The objective of this study was to analyze the potency of LAA in chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADSC) by analyzing the glycosaminoglycans (GAG) content and type II collagen (Coll2) localization. ADSC was characterized using flow cytometry and cultured in media containing various concentrations of LAA (0, 25, 50, 100 μg/mL) for 2, 3 and 4 weeks. Coll2 localization was analyzed by immunocytochemistry (ICC) using a confocal microscope. The quantification of GAG was performed by Alcian Blue staining and calcium deposition by Alizarin Red S staining. The results showed that ADSC was positive for mesenchymal stem cell (MSC) markers. Coll2 was localized in the cytoplasm and showed increasing abundance along with the increase of the LAA concentration. The highest intensity of Coll2 localization was shown in LAA 100 μg/mL. ADSC in LAA induction medium showed higher GAG content compared to the control group (LAA 0 μg/mL) (p < 0.05). The highest calcium deposit was shown by LAA 25 μg/mL after 4 weeks of culture (p < 0.05) and it decreased at higher concentrations. In conclusion, LAA 100 μg/mL is considered the optimum LAA concentration for chondrogenic differentiation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖胺聚糖含量和II型胶原定位在l -抗坏血酸2-磷酸诱导脂肪源间充质干细胞成软骨分化中的作用
已知l -抗坏血酸2-磷酸(LAA)可诱导软骨细胞分化。本研究的目的是通过分析糖胺聚糖(GAG)含量和II型胶原(Coll2)定位来分析LAA在脂肪源性间充质干细胞(ADSC)软骨分化中的作用。采用流式细胞术对ADSC进行表征,并在含有不同浓度LAA(0、25、50、100 μg/mL)的培养基中培养2、3、4周。用共聚焦显微镜免疫细胞化学(ICC)分析Coll2的定位。阿利新蓝染色定量GAG,茜素红S染色定量钙沉积。结果显示,ADSC细胞间充质干细胞(MSC)标记物阳性。Coll2定位于细胞质中,并随着LAA浓度的增加而增加。在100 μg/mL的LAA中,Coll2的定位强度最高。LAA诱导培养基中的ADSC中GAG含量高于对照组(LAA 0 μg/mL) (p < 0.05)。培养4周后,LAA浓度为25 μg/mL时钙沉积量最高(p < 0.05),浓度越高钙沉积量越少。综上所述,LAA 100 μg/mL被认为是软骨分化的最佳LAA浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Magnetic Characterization of Fine Sediment in the Solo Basin Indonesia The Potency of Camellia Sinensis L. to Reduce Proinflammatory Cytokine Levels in the Acute Respiratory Distress Syndrome Rat Model Computational Study of Nocardiotide-A Analogues in the Development of Technetium-99m Radiopeptides for Cancer Imaging for Targeting Somatostatin Receptor 2 Modelling the Impact of Decomposed Disease-Induced Dead Cashew Plants on Fusarium Wilt Dynamics in South-Eastern Tanzania The Modified Double Sampling Coefficient of Variation Control Chart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1