Investigation on the Impact and Penetration Performance of the Particulated Jet into Concrete Targets

Qi-feng Zhu, Q. Xiao, Zhengxiang Huang, X. Zu, Xin Jia
{"title":"Investigation on the Impact and Penetration Performance of the Particulated Jet into Concrete Targets","authors":"Qi-feng Zhu, Q. Xiao, Zhengxiang Huang, X. Zu, Xin Jia","doi":"10.1115/hvis2019-076","DOIUrl":null,"url":null,"abstract":"\n In this study, the performance of titanium alloys (TC21, TC1), nickel-titanium (Ni-Ti) alloy, and zirconium-niobium (Zr-Nb) alloy lined shaped charge impact and penetration into concrete targets are investigated experimentally. Shaped charge jet radiographs reveal that the resulting jets of titanium alloys and Ni-Ti alloy exhibit particulate, radially dispersed behaviors, whereas that of the Zr-Nb alloy is coherent. Cavity diameters, penetration depths and parameters of the impact craters generated by the jets were analyzed using the depth of penetration (DOP) experiment method. Data indicate that the particulated jet causes more extensive damage to the surface of the concrete targets compared to the coherent jet. The penetration depth decreases to some degree, but the cavity diameter increases significantly. Penetration efficiency varies with degree of dispersion of the particulated jet and, as such, is also sensitive to stand-off distance.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the performance of titanium alloys (TC21, TC1), nickel-titanium (Ni-Ti) alloy, and zirconium-niobium (Zr-Nb) alloy lined shaped charge impact and penetration into concrete targets are investigated experimentally. Shaped charge jet radiographs reveal that the resulting jets of titanium alloys and Ni-Ti alloy exhibit particulate, radially dispersed behaviors, whereas that of the Zr-Nb alloy is coherent. Cavity diameters, penetration depths and parameters of the impact craters generated by the jets were analyzed using the depth of penetration (DOP) experiment method. Data indicate that the particulated jet causes more extensive damage to the surface of the concrete targets compared to the coherent jet. The penetration depth decreases to some degree, but the cavity diameter increases significantly. Penetration efficiency varies with degree of dispersion of the particulated jet and, as such, is also sensitive to stand-off distance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
颗粒射流对混凝土目标的冲击与侵彻性能研究
实验研究了钛合金(TC21、TC1)、镍钛(Ni-Ti)合金和锆铌(Zr-Nb)合金内衬聚能药对混凝土靶的冲击和侵彻性能。聚能射流x线照片显示,钛合金和ni -钛合金的射流表现为颗粒状、径向分散的行为,而Zr-Nb合金的射流表现为相干射流。采用穿透深度(DOP)实验方法,对射流形成的撞击坑的空腔直径、穿透深度和参数进行了分析。数据表明,与相干射流相比,颗粒射流对混凝土目标表面造成更广泛的损伤。侵彻深度有一定程度的减小,但空腔直径明显增大。穿透效率随颗粒射流的分散程度而变化,因此对距离也很敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact Modeling for the Double Asteroid Redirection Test Mission Bulking as a Mechanism in the Failure of Advanced Ceramics Effects of Additional Body on Jet Velocity of Hyper-cumulation Assessment and Validation of Collision “Consequence” Method of Assessing Orbital Regime Risk Posed by Potential Satellite Conjunctions Dynamic response of graphene and yttria-stabilized zirconia (YSZ) composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1