Compositional effect on auto-oscillation behavior of Ni 100 −xFex/Pt spin Hall nano-oscillators

M. Haidar, H. Mazraati, P. Dürrenfeld, H. Fulara, M. Ranjbar, J. Åkerman
{"title":"Compositional effect on auto-oscillation behavior of Ni 100 −xFex/Pt spin Hall nano-oscillators","authors":"M. Haidar, H. Mazraati, P. Dürrenfeld, H. Fulara, M. Ranjbar, J. Åkerman","doi":"10.1063/5.0035697","DOIUrl":null,"url":null,"abstract":"We demonstrate the compositional effect on the magnetodynamic and auto-oscillations properties of Ni100-xFex/Pt (x= 10 to 40) nanoconstriction based spin Hall nano-oscillators. Using spin-torque ferromagnetic resonance (ST-FMR) performed on microstrips, we measure a significant reduction in both damping and spin Hall efficiency with increasing Fe content, which lowers the spin pumping contribution. The strong compositional effect on spin Hall efficiency is primarily attributed to the increased saturation magnetization in Fe-rich devices. As a direct consequence, higher current densities are required to drive spin-wave auto-oscillations at higher microwave frequencies in Fe-rich nano-constriction devices. Our results establish the critical role of the compositional effect in engineering the magnetodynamic and auto-oscillation properties of spin Hall devices for microwav eand magnonic applications.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0035697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We demonstrate the compositional effect on the magnetodynamic and auto-oscillations properties of Ni100-xFex/Pt (x= 10 to 40) nanoconstriction based spin Hall nano-oscillators. Using spin-torque ferromagnetic resonance (ST-FMR) performed on microstrips, we measure a significant reduction in both damping and spin Hall efficiency with increasing Fe content, which lowers the spin pumping contribution. The strong compositional effect on spin Hall efficiency is primarily attributed to the increased saturation magnetization in Fe-rich devices. As a direct consequence, higher current densities are required to drive spin-wave auto-oscillations at higher microwave frequencies in Fe-rich nano-constriction devices. Our results establish the critical role of the compositional effect in engineering the magnetodynamic and auto-oscillation properties of spin Hall devices for microwav eand magnonic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组分对Ni 100−xFex/Pt自旋霍尔纳米振荡器自振荡行为的影响
我们证明了成分对Ni100-xFex/Pt (x= 10 ~ 40)纳米收缩自旋霍尔振荡器的磁动力和自振荡特性的影响。利用在微带上进行的自旋转矩铁磁共振(ST-FMR),我们测量到随着铁含量的增加,阻尼和自旋霍尔效率都显著降低,这降低了自旋泵浦的贡献。富铁器件的饱和磁化强度增加,对自旋霍尔效率产生了强烈的影响。直接的结果是,在富铁纳米收缩器件中,需要更高的电流密度来驱动高微波频率下的自旋波自振荡。我们的研究结果确立了组分效应在工程中对微波和磁振应用的自旋霍尔器件的磁动力和自振荡特性的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A pathway towards high throughput Quantum Monte Carlo simulations for alloys: A case study of two-dimensional (2D) GaSₓSe₁₋ₓ Data analytics accelerates the experimental discovery of new thermoelectric materials with extremely high figure of merit Thermal laser evaporation of elements from across the periodic table Perpendicular magnetic anisotropy in ultra-thin Cu2Sb-type (Mn–Cr)AlGe films fabricated onto thermally oxidized silicon substrates The Mesoscale Crystallinity of Nacreous Pearls
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1