{"title":"Clustering Based Sampling for Learning from Unbalanced Seismic Data Set","authors":"M. Rahmani, Abdelmalek Amine, R. M. Hamou","doi":"10.4018/IJGEE.2017070101","DOIUrl":null,"url":null,"abstract":"Thisarticledescribeshowsomestratumcontainastressconcentrationzones,andwhilethestress increases andexceedsahighvalueor socalledcriticalvalue, it destroys rocks.This causes the emissionofseismictremorsofdifferentenergies.Seismologyconsistsofthestudyoftheeffectsof seismicwaves,andpredictingtheseismichazardstorocksandlongwallcoals.Thisisalongsidethe mainproblemoccurredinthisfield,theunbalanceddatathatlackscausewhenstudyingtheseismic hazards.Learningfromunbalanceddataisconsideredasoneofthemostdifficultissuestosolve nowadays,thisarticlepresentsaninformedsamplingmethodthatisbasedonaclusteringapproach forthepredictionofseismichazardsinPolishcoalmines.Theideaisbasedonthedividingofnonhazardousexampleswhichrepresentsmorethan90%ofthereal-lifecasesintosubsetsofexamplesin ordertobalancetheclasses.Thisactionfacilitatesthelearningfromtherecordeddata.Forevaluation, theauthorshaveevaluatedthesystembasedonthepredictionofseismichazardswherepositive resultshavebeenreviewedcomparedtotheclassificationofexampleswithoutbalancingthecases. KEywoRDS Clustering, Data Mining, Machine Learning, Seismic Hazards Detection, Supervised Classification, Unbalanced Data","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"39 1","pages":"1-22"},"PeriodicalIF":0.5000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGEE.2017070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
基于聚类的非平衡地震数据学习方法
Thisarticledescribeshowsomestratumcontainastressconcentrationzones,andwhilethestress增加了andexceedsahighvalueor socalledcriticalvalue,它破坏了岩石。This导致了emissionofseismictremorsofdifferentenergies。Seismologyconsistsofthestudyoftheeffectsof seismicwaves,andpredictingtheseismichazardstorocksandlongwallcoals。Thisisalongsidethe mainproblemoccurredinthisfield,theunbalanceddatathatlackscausewhenstudyingtheseismic危险。Learningfromunbalanceddataisconsideredasoneofthemostdifficultissuestosolve现在是thisarticlepresentsaninformedsamplingmethodthatisbasedonaclusteringapproach forthepredictionofseismichazardsinPolishcoalmines。Theideaisbasedonthedividingofnonhazardousexampleswhichrepresentsmorethan90%ofthereal-lifecasesintosubsetsofexamplesin ordertobalancetheclasses.Thisactionfacilitatesthelearningfromtherecordeddata。Forevaluation, theauthorshaveevaluatedthesystembasedonthepredictionofseismichazardswherepositive resultshavebeenreviewedcomparedtotheclassificationofexampleswithoutbalancingthecases。关键词聚类,数据挖掘,机器学习,地震灾害检测,监督分类,不平衡数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。