The Study on The Numerical Analysis Method for Ground Improved by Cement Mixing Method

IF 0.4 Q4 ENGINEERING, GEOLOGICAL Journal of the Korean Geosynthetic Society Pub Date : 2018-12-01 DOI:10.12814/JKGSS.2018.17.4.041
Byungill Kim, Kang-Han Hong, Young-Seon Kim, Sang-jae Han
{"title":"The Study on The Numerical Analysis Method for Ground Improved by Cement Mixing Method","authors":"Byungill Kim, Kang-Han Hong, Young-Seon Kim, Sang-jae Han","doi":"10.12814/JKGSS.2018.17.4.041","DOIUrl":null,"url":null,"abstract":"Since the composite ground design method is easy to apply for calculation or numerical analysis, it is applied to the design of cement mixing methods. However, the comparison studies between analysis and actual results such as a trial test and construction for the cement mixing method are few because the composite ground design method was developed for the compaction pile (SCP, GCP) methods. In this study, the results of various analysis methods, such as the composite ground analysis method (1 case) and the individual pile method (3 cases), were compared with actual measurements through a two-dimensional finite element numerical analysis. In case of the surface settlements, the results of study show that the individual plate method was larger than the actual measurements, while other methods are similar. The settlements at the under ground of the improved area is overestimated in all analysis methods. When comparing numerical analysis results for the horizontal displacement, and ground reaction forces, the individual pile method in equivalent wall concept was found to be the most similar to the measurements. The composite ground method was not able to predict the behavior of stress transfer (Arching effect) and it turned out that the prediction of horizontal displacement was too large.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":"46 1","pages":"41-52"},"PeriodicalIF":0.4000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Geosynthetic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12814/JKGSS.2018.17.4.041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Since the composite ground design method is easy to apply for calculation or numerical analysis, it is applied to the design of cement mixing methods. However, the comparison studies between analysis and actual results such as a trial test and construction for the cement mixing method are few because the composite ground design method was developed for the compaction pile (SCP, GCP) methods. In this study, the results of various analysis methods, such as the composite ground analysis method (1 case) and the individual pile method (3 cases), were compared with actual measurements through a two-dimensional finite element numerical analysis. In case of the surface settlements, the results of study show that the individual plate method was larger than the actual measurements, while other methods are similar. The settlements at the under ground of the improved area is overestimated in all analysis methods. When comparing numerical analysis results for the horizontal displacement, and ground reaction forces, the individual pile method in equivalent wall concept was found to be the most similar to the measurements. The composite ground method was not able to predict the behavior of stress transfer (Arching effect) and it turned out that the prediction of horizontal displacement was too large.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水泥搅拌法加固地基的数值分析方法研究
由于复合地基设计方法易于应用于计算或数值分析,故将其应用于水泥搅拌方法的设计。然而,由于密实桩(SCP、GCP)方法的复合地基设计方法的发展,对水泥搅拌法的分析与实际结果的对比研究(如试验和施工)很少。本研究通过二维有限元数值分析,将复合地基分析法(1例)和单桩法(3例)等多种分析方法的结果与实际测量结果进行对比。对于地表沉降,研究结果表明,单板法比实际测量值大,而其他方法相似。所有分析方法均高估了改进区地下沉降。通过对水平位移和地面反力的数值分析结果进行比较,发现等效墙概念下的单桩法与实测结果最接近。复合地基法不能预测应力传递行为(拱效应),且预测水平位移过大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
20.00%
发文量
0
期刊最新文献
Evaluation of Field Applicability of Slope of Improved Soil for Ground Stabilizer Analysis of the Correlation between the velocity speed of High-Speed Railways and the Suppressing Effect of lateral Displacement of retaining wall according to the Arrangement of Stabilizing Piles Behavioral Characteristics and Safety Management Plan for Fill Dam During Water Level Fluctuation Using Numerical Analysis Application of Laboratory Pressurized Vane Shear Test and Discrete Element Method for Determination of Foam-conditioned Soil Properties Development and Reliability Verification of Quality Control System for Compaction Grouting Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1