Information Combining

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Foundations and Trends in Communications and Information Theory Pub Date : 2006-11-10 DOI:10.1561/0100000013
I. Land, J. Huber
{"title":"Information Combining","authors":"I. Land, J. Huber","doi":"10.1561/0100000013","DOIUrl":null,"url":null,"abstract":"Consider coded transmission over a binary-input symmetric memoryless channel. The channel decoder uses the noisy observations of the code symbols to reproduce the transmitted code symbols. Thus, it combines the information about individual code symbols to obtain an over-all information about each code symbol, which may be the reproduced code symbol or its a-posteriori probability. This tutorial addresses the problem of \"information combining\" from an information-theory point of view: the decoder combines the mutual information between channel input symbols and channel output symbols (observations) to the mutual information between one transmitted symbol and all channel output symbols. The actual value of the combined information depends on the statistical structure of the channels. However, it can be upper and lower bounded for the assumed class of channels. This book first introduces the concept of mutual information profiles and revisits the well-known Jensen's inequality. Using these tools, the bounds on information combining are derived for single parity-check codes and for repetition codes. The application of the bounds is illustrated in four examples: information processing characteristics of coding schemes, including extrinsic information transfer (EXIT) functions; design of multiple turbo codes; bounds for the decoding threshold of low-density parity-check codes; EXIT function of the accumulator.","PeriodicalId":45236,"journal":{"name":"Foundations and Trends in Communications and Information Theory","volume":"537 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2006-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Communications and Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/0100000013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 57

Abstract

Consider coded transmission over a binary-input symmetric memoryless channel. The channel decoder uses the noisy observations of the code symbols to reproduce the transmitted code symbols. Thus, it combines the information about individual code symbols to obtain an over-all information about each code symbol, which may be the reproduced code symbol or its a-posteriori probability. This tutorial addresses the problem of "information combining" from an information-theory point of view: the decoder combines the mutual information between channel input symbols and channel output symbols (observations) to the mutual information between one transmitted symbol and all channel output symbols. The actual value of the combined information depends on the statistical structure of the channels. However, it can be upper and lower bounded for the assumed class of channels. This book first introduces the concept of mutual information profiles and revisits the well-known Jensen's inequality. Using these tools, the bounds on information combining are derived for single parity-check codes and for repetition codes. The application of the bounds is illustrated in four examples: information processing characteristics of coding schemes, including extrinsic information transfer (EXIT) functions; design of multiple turbo codes; bounds for the decoding threshold of low-density parity-check codes; EXIT function of the accumulator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息相结合
考虑在二进制输入对称无内存信道上的编码传输。信道解码器利用编码符号的噪声观测来再现传输的编码符号。因此,将单个码号的信息进行组合,得到关于每个码号的总体信息,该信息可以是再现码号,也可以是其后验概率。本教程从信息论的角度解决了“信息组合”问题:解码器将信道输入符号和信道输出符号(观测值)之间的互信息组合为一个传输符号和所有信道输出符号之间的互信息。组合信息的实际值取决于信道的统计结构。然而,对于假定的通道类,它可以是上界和下界。这本书首先介绍了互信息概况的概念,并重新审视了著名的詹森不等式。使用这些工具,推导了单个奇偶校验码和重复码的信息组合边界。通过四个例子说明了边界的应用:编码方案的信息处理特征,包括外部信息传递(EXIT)函数;多涡轮码设计;低密度奇偶校验码译码阈值的边界累加器的EXIT函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Foundations and Trends in Communications and Information Theory
Foundations and Trends in Communications and Information Theory COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
7.90
自引率
0.00%
发文量
6
期刊介绍: Foundations and Trends® in Communications and Information Theory publishes survey and tutorial articles in the following topics: - Coded modulation - Coding theory and practice - Communication complexity - Communication system design - Cryptology and data security - Data compression - Data networks - Demodulation and Equalization - Denoising - Detection and estimation - Information theory and statistics - Information theory and computer science - Joint source/channel coding - Modulation and signal design - Multiuser detection - Multiuser information theory
期刊最新文献
Probabilistic Amplitude Shaping Reed-Muller Codes Ultra-Reliable Low-Latency Communications: Foundations, Enablers, System Design, and Evolution Towards 6G Reed-Muller Codes Finite Blocklength Lossy Source Coding for Discrete Memoryless Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1