Saeideh Fouladlou, Mehdi Rajabioun, Darya Bahojb Hashemian
{"title":"IDENTIFICATION OF EFFECTIVE GENES OF MULTIPLE CANCERS USING NEURAL NETWORK","authors":"Saeideh Fouladlou, Mehdi Rajabioun, Darya Bahojb Hashemian","doi":"10.4015/s1016237223500205","DOIUrl":null,"url":null,"abstract":"Cancer is a major health concern that affects a significant number of people worldwide and can often result in fatalities. Therefore, there is a growing need to develop effective approaches for early diagnosis and classification of different types of cancer. Early detection of cancer is crucial for prompt and accurate treatment. Thus, researchers have been working to identify non-invasive and precise methods for the early diagnosis, monitoring, and control of cancer. Leukemia and prostate cancer are two of the most common types of cancer globally. Microarray data analysis has become a valuable tool for diagnosing and classifying different types of cancerous tissues. To improve the accuracy of diagnosis, hybrid algorithms and neural networks are being employed. This paper provides a review of different biomarkers for leukemia and prostate cancer and proposes a novel method for distinguishing between the two cancers. The proposed method includes appropriate gene selection, a new hybrid model, and differential analysis of microarray data to create a diagnostic tool. The results indicate that the proposed algorithm is highly accurate and efficient in selecting a small set of valuable genes to improve classification accuracy. In conclusion, the accurate diagnosis and classification of cancer are essential for timely and effective treatment. The proposed method can contribute to the development of a reliable diagnostic tool for leukemia and prostate cancer, and the application of microarray data and hybrid algorithms can be useful for diagnosing other types of cancer as well.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"80 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is a major health concern that affects a significant number of people worldwide and can often result in fatalities. Therefore, there is a growing need to develop effective approaches for early diagnosis and classification of different types of cancer. Early detection of cancer is crucial for prompt and accurate treatment. Thus, researchers have been working to identify non-invasive and precise methods for the early diagnosis, monitoring, and control of cancer. Leukemia and prostate cancer are two of the most common types of cancer globally. Microarray data analysis has become a valuable tool for diagnosing and classifying different types of cancerous tissues. To improve the accuracy of diagnosis, hybrid algorithms and neural networks are being employed. This paper provides a review of different biomarkers for leukemia and prostate cancer and proposes a novel method for distinguishing between the two cancers. The proposed method includes appropriate gene selection, a new hybrid model, and differential analysis of microarray data to create a diagnostic tool. The results indicate that the proposed algorithm is highly accurate and efficient in selecting a small set of valuable genes to improve classification accuracy. In conclusion, the accurate diagnosis and classification of cancer are essential for timely and effective treatment. The proposed method can contribute to the development of a reliable diagnostic tool for leukemia and prostate cancer, and the application of microarray data and hybrid algorithms can be useful for diagnosing other types of cancer as well.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.