Modeling Real-Time Application Processor Scheduling for Fog Computing

M. Sharifi, A. Abhari, S. Taghipour
{"title":"Modeling Real-Time Application Processor Scheduling for Fog Computing","authors":"M. Sharifi, A. Abhari, S. Taghipour","doi":"10.23919/ANNSIM52504.2021.9552113","DOIUrl":null,"url":null,"abstract":"This paper presents a model for fog computing by considering the processing nodes of both edge and cloud devices for real-time applications. We use mixed-integer linear programming (MILP) mathematical model to find the optimal task scheduling and compare it with the performance of the FIFO online scheduling strategies for a fog computing sample that consists of n edge processors (EP) and one cloud processor. The MILP mathematical dispatching strategy optimizes the jobs' scheduling on the EPs and cloud processors. Finally, solving the model and simulation of more scenarios is presented to compare the performance of the optimized job scheduling model with two FIFO scenarios for a real-time application on fog computing. The results show that the FIFO process scheduling strategy's performance is between 62.71% to 95.10% of the optimal jobs' scheduling proposed in this work for the real-time fog computing-based applications.","PeriodicalId":6782,"journal":{"name":"2021 Annual Modeling and Simulation Conference (ANNSIM)","volume":"16 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Annual Modeling and Simulation Conference (ANNSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ANNSIM52504.2021.9552113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a model for fog computing by considering the processing nodes of both edge and cloud devices for real-time applications. We use mixed-integer linear programming (MILP) mathematical model to find the optimal task scheduling and compare it with the performance of the FIFO online scheduling strategies for a fog computing sample that consists of n edge processors (EP) and one cloud processor. The MILP mathematical dispatching strategy optimizes the jobs' scheduling on the EPs and cloud processors. Finally, solving the model and simulation of more scenarios is presented to compare the performance of the optimized job scheduling model with two FIFO scenarios for a real-time application on fog computing. The results show that the FIFO process scheduling strategy's performance is between 62.71% to 95.10% of the optimal jobs' scheduling proposed in this work for the real-time fog computing-based applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雾计算的实时应用处理器调度建模
本文提出了一种同时考虑边缘设备和云设备处理节点的实时雾计算模型。我们使用混合整数线性规划(MILP)数学模型来寻找最优任务调度,并将其与由n个边缘处理器(EP)和一个云处理器组成的雾计算样本的FIFO在线调度策略的性能进行比较。MILP数学调度策略优化了作业在EPs和云处理器上的调度。最后,对模型进行求解并对多个场景进行仿真,比较优化后的作业调度模型与两种先进先出场景在雾计算实时应用中的性能。结果表明,在基于实时雾计算的应用中,FIFO进程调度策略的性能在本文提出的最优作业调度的62.71% ~ 95.10%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Tutorial Introduction to Colored Petri Nets Framework for Model-Driven System Design and Engineering Decision of Learning Status Based on Modeling of the Information Measurement of Social Behavioral Tasks in Rhesus Monkeys Towards a Universal Representation of DEVS: A Metamodel-Based Definition of DEVS Formal Specification Evaluating Azure Kinect and Structure Mark-II 3D Surface Scanners for Clinical Chest Wall Deformity Assessment Automatically Combining Conceptual Models Using Semantic and Structural Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1