EVALUATING EFFECTIVENESS OF ENSEMBLE CLASSIFIERS WHEN DETECTING FUZZERS ATTACKS ON THE UNSW-NB15 DATASET

Hoang Ngoc Thanh, T. Lang
{"title":"EVALUATING EFFECTIVENESS OF ENSEMBLE CLASSIFIERS WHEN DETECTING FUZZERS ATTACKS ON THE UNSW-NB15 DATASET","authors":"Hoang Ngoc Thanh, T. Lang","doi":"10.15625/1813-9663/36/2/14786","DOIUrl":null,"url":null,"abstract":"The UNSW-NB15 dataset was created by the Australian Cyber Security Centre in 2015 by using the IXIA tool to extract normal behaviors and modern attacks, it includes normal data and 9 types of attacks with 49 features. Previous research results show that the detection of Fuzzers attacks in this dataset gives the lowest classification quality. This paper analyzes and evaluates the performance of using known ensemble techniques such as Bagging, AdaBoost, Stacking, Decorate, Random Forest and Voting to detect FUZZERS attacks on UNSW-NB15 dataset to create models. The experimental results show that the AdaBoost technique with the component classifiers using decision tree for the best classification quality with F −Measure is 96.76% compared to 94.16%, which is the best result by using single classifiers and 96.36% by using the Random Forest technique.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"24 1","pages":"173-185"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/36/2/14786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The UNSW-NB15 dataset was created by the Australian Cyber Security Centre in 2015 by using the IXIA tool to extract normal behaviors and modern attacks, it includes normal data and 9 types of attacks with 49 features. Previous research results show that the detection of Fuzzers attacks in this dataset gives the lowest classification quality. This paper analyzes and evaluates the performance of using known ensemble techniques such as Bagging, AdaBoost, Stacking, Decorate, Random Forest and Voting to detect FUZZERS attacks on UNSW-NB15 dataset to create models. The experimental results show that the AdaBoost technique with the component classifiers using decision tree for the best classification quality with F −Measure is 96.76% compared to 94.16%, which is the best result by using single classifiers and 96.36% by using the Random Forest technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估集成分类器在检测unsw-nb15数据集上的模糊攻击时的有效性
UNSW-NB15数据集由澳大利亚网络安全中心于2015年创建,使用IXIA工具提取正常行为和现代攻击,它包括正常数据和9种攻击类型,具有49个特征。先前的研究结果表明,在该数据集中检测Fuzzers攻击给出的分类质量最低。本文分析和评估了使用Bagging、AdaBoost、Stacking、装饰、Random Forest和Voting等已知集成技术检测UNSW-NB15数据集上的FUZZERS攻击并创建模型的性能。实验结果表明,使用决策树的AdaBoost技术对F−Measure的最佳分类质量为96.76%,而使用单个分类器和使用随机森林技术的分类质量分别为94.16%和96.36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PROVING THE SECURITY OF AES BLOCK CIPHER BASED ON MODIFIED MIXCOLUMN AN IMPROVED INDEXING METHOD FOR QUERYING BIG XML FILES OHYEAH AT VLSP2022-EVJVQA CHALLENGE: A JOINTLY LANGUAGE-IMAGE MODEL FOR MULTILINGUAL VISUAL QUESTION ANSWERING THE VNPT-IT EMOTION TRANSPLANTATION APPROACH FOR VLSP 2022 TAEKWONDO POSE ESTIMATION WITH DEEP LEARNING ARCHITECTURES ON ONE-DIMENSIONAL AND TWO-DIMENSIONAL DATA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1