{"title":"Seismic Active Pressure on an Inclined Retaining Wall with Surcharge on a Submerged Backfill","authors":"G. Srikar, S. Mittal","doi":"10.1142/s1793431122500075","DOIUrl":null,"url":null,"abstract":"Seismic design of retaining wall supporting submerged retaining wall requires precise estimation of lateral earth pressure considering realistic parameters that constitute hydro-dynamic pressure, frequency inputs and other dynamic properties. The purpose of this study is to establish a closed-form solution for seismic lateral earth pressure acting on a retaining wall with submerged backfill with surcharge. The proposed method includes the dynamic nature by considering time-period, the frequency of the seismic wave, dynamic soil properties. Boundary conditions in the backfill are satisfied due to the propagation of the seismic wave. This study considers amplified seismic waves to estimate inertial forces due to critical soil mass and surcharge. The excess pore pressure generated during the seismic action is also considered in this study. The obtained formulation shows the significant effect of frequency content, damping resistance offered by backfill soil, amplification of seismic wave on seismic earth pressure. The seismic earth pressure obtained from this study is observed to be in a close agreement with centrifuge test results and analytical studies from the literature. This study definitely addresses the lateral pressure distribution on the retaining wall with backfill submergence and surcharge on the surface.","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earthquake and Tsunami","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1142/s1793431122500075","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Seismic design of retaining wall supporting submerged retaining wall requires precise estimation of lateral earth pressure considering realistic parameters that constitute hydro-dynamic pressure, frequency inputs and other dynamic properties. The purpose of this study is to establish a closed-form solution for seismic lateral earth pressure acting on a retaining wall with submerged backfill with surcharge. The proposed method includes the dynamic nature by considering time-period, the frequency of the seismic wave, dynamic soil properties. Boundary conditions in the backfill are satisfied due to the propagation of the seismic wave. This study considers amplified seismic waves to estimate inertial forces due to critical soil mass and surcharge. The excess pore pressure generated during the seismic action is also considered in this study. The obtained formulation shows the significant effect of frequency content, damping resistance offered by backfill soil, amplification of seismic wave on seismic earth pressure. The seismic earth pressure obtained from this study is observed to be in a close agreement with centrifuge test results and analytical studies from the literature. This study definitely addresses the lateral pressure distribution on the retaining wall with backfill submergence and surcharge on the surface.
期刊介绍:
Journal of Earthquake and Tsunami provides a common forum for scientists and engineers working in the areas of earthquakes and tsunamis to communicate and interact with one another and thereby enhance the opportunities for such cross-fertilization of ideas. The Journal publishes original papers pertaining to state-of-the-art research and development in Geological and Seismological Setting; Ground Motion, Site and Building Response; Tsunami Generation, Propagation, Damage and Mitigation, as well as Education and Risk Management following an earthquake or a tsunami.
We welcome papers in the following categories:
Geological and Seismological Aspects
Tectonics: (Geology - earth processes)
Fault processes and earthquake generation: seismology (earthquake processes)
Earthquake wave propagation: geophysics
Remote sensing
Earthquake Engineering
Geotechnical hazards and response
Effects on buildings and structures
Risk analysis and management
Retrofitting and remediation
Education and awareness
Material Behaviour
Soil
Reinforced concrete
Steel
Tsunamis
Tsunamigenic sources
Tsunami propagation: Physical oceanography
Run-up and damage: wave hydraulics.