Improving the Cavalieri estimator under non-equidistant sampling and dropouts

IF 0.8 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Image Analysis & Stereology Pub Date : 2020-11-04 DOI:10.5566/IAS.2422
Mads Stehr, M. Kiderlen
{"title":"Improving the Cavalieri estimator under non-equidistant sampling and dropouts","authors":"Mads Stehr, M. Kiderlen","doi":"10.5566/IAS.2422","DOIUrl":null,"url":null,"abstract":"Motivated by the stereological problem of volume estimation from parallel section profiles, the so-called Newton-Cotes integral estimators based on random sampling nodes are analyzed. These estimators generalize the classical Cavalieri estimator and its variant for non-equidistant sampling nodes, the generalized Cavalieri estimator, and have typically a substantially smaller variance than the latter. The present paper focuses on the following points in relation to Newton-Cotes estimators: the treatment of dropouts, the construction of variance estimators, and, finally, their application in volume estimation of convex bodies. Dropouts are eliminated points in the initial stationary point process of sampling nodes, modeled by independent thinning. Among other things, exact representations of the variance are given in terms of the thinning probability and increments of the initial points under two practically relevant sampling models. The paper presents a general estimation procedure for the variance of Newton-Cotes estimators based on the sampling nodes in a bounded interval. Finally, the findings are illustrated in an application of volume estimation for three-dimensional convex bodies with sufficiently smooth boundaries.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"17 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.2422","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Motivated by the stereological problem of volume estimation from parallel section profiles, the so-called Newton-Cotes integral estimators based on random sampling nodes are analyzed. These estimators generalize the classical Cavalieri estimator and its variant for non-equidistant sampling nodes, the generalized Cavalieri estimator, and have typically a substantially smaller variance than the latter. The present paper focuses on the following points in relation to Newton-Cotes estimators: the treatment of dropouts, the construction of variance estimators, and, finally, their application in volume estimation of convex bodies. Dropouts are eliminated points in the initial stationary point process of sampling nodes, modeled by independent thinning. Among other things, exact representations of the variance are given in terms of the thinning probability and increments of the initial points under two practically relevant sampling models. The paper presents a general estimation procedure for the variance of Newton-Cotes estimators based on the sampling nodes in a bounded interval. Finally, the findings are illustrated in an application of volume estimation for three-dimensional convex bodies with sufficiently smooth boundaries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进非等距采样和dropouts下的Cavalieri估计量
从平行剖面体积估计的立体问题出发,分析了基于随机采样节点的牛顿-柯特积分估计。这些估计量推广了经典的Cavalieri估计量及其非等距采样节点的变体,即广义Cavalieri估计量,并且通常具有比后者小得多的方差。本文着重讨论了牛顿-柯特估计量的以下几个方面:dropouts的处理,方差估计量的构造,以及它们在凸体体积估计中的应用。Dropouts是采样节点初始平稳点过程中的消除点,通过独立细化建模。除其他外,方差的精确表示是根据两种实际相关的抽样模型下初始点的细化概率和增量给出的。本文给出了基于有界区间内采样节点的Newton-Cotes估计量方差的一般估计方法。最后,在具有足够光滑边界的三维凸体体积估计的应用中说明了这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Image Analysis & Stereology
Image Analysis & Stereology MATERIALS SCIENCE, MULTIDISCIPLINARY-MATHEMATICS, APPLIED
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.
期刊最新文献
PU-NET DEEP LEARNING ARCHITECTURE FOR GLIOMAS BRAIN TUMOUR SEGMENTATION IN MAGNETIC RESONANCE IMAGES Sample-balanced and IoU-guided anchor-free visual tracking Existence and approximation of densities of chord length- and cross section area distributions IMPROVEMENT PROCEDURE FOR IMAGE SEGMENTATION OF FRUITS AND VEGETABLES BASED ON THE OTSU METHOD. A Completed Multiply Threshold Encoding Pattern for Texture Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1