{"title":"Improving the Cavalieri estimator under non-equidistant sampling and dropouts","authors":"Mads Stehr, M. Kiderlen","doi":"10.5566/IAS.2422","DOIUrl":null,"url":null,"abstract":"Motivated by the stereological problem of volume estimation from parallel section profiles, the so-called Newton-Cotes integral estimators based on random sampling nodes are analyzed. These estimators generalize the classical Cavalieri estimator and its variant for non-equidistant sampling nodes, the generalized Cavalieri estimator, and have typically a substantially smaller variance than the latter. The present paper focuses on the following points in relation to Newton-Cotes estimators: the treatment of dropouts, the construction of variance estimators, and, finally, their application in volume estimation of convex bodies. Dropouts are eliminated points in the initial stationary point process of sampling nodes, modeled by independent thinning. Among other things, exact representations of the variance are given in terms of the thinning probability and increments of the initial points under two practically relevant sampling models. The paper presents a general estimation procedure for the variance of Newton-Cotes estimators based on the sampling nodes in a bounded interval. Finally, the findings are illustrated in an application of volume estimation for three-dimensional convex bodies with sufficiently smooth boundaries.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"17 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.2422","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Motivated by the stereological problem of volume estimation from parallel section profiles, the so-called Newton-Cotes integral estimators based on random sampling nodes are analyzed. These estimators generalize the classical Cavalieri estimator and its variant for non-equidistant sampling nodes, the generalized Cavalieri estimator, and have typically a substantially smaller variance than the latter. The present paper focuses on the following points in relation to Newton-Cotes estimators: the treatment of dropouts, the construction of variance estimators, and, finally, their application in volume estimation of convex bodies. Dropouts are eliminated points in the initial stationary point process of sampling nodes, modeled by independent thinning. Among other things, exact representations of the variance are given in terms of the thinning probability and increments of the initial points under two practically relevant sampling models. The paper presents a general estimation procedure for the variance of Newton-Cotes estimators based on the sampling nodes in a bounded interval. Finally, the findings are illustrated in an application of volume estimation for three-dimensional convex bodies with sufficiently smooth boundaries.
期刊介绍:
Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.