Uncovering the mouse olfactory long non-coding transcriptome with a novel machine-learning model

Antonio P. Camargo, T. S. Nakahara, L. E. Firmino, P. H. Netto, João B. P. do Nascimento, Elisa R. Donnard, P. Galante, M. Carazzolle, B. Malnic, F. Papes
{"title":"Uncovering the mouse olfactory long non-coding transcriptome with a novel machine-learning model","authors":"Antonio P. Camargo, T. S. Nakahara, L. E. Firmino, P. H. Netto, João B. P. do Nascimento, Elisa R. Donnard, P. Galante, M. Carazzolle, B. Malnic, F. Papes","doi":"10.1093/dnares/dsz015","DOIUrl":null,"url":null,"abstract":"Abstract Very little is known about long non-coding RNAs (lncRNAs) in the mammalian olfactory sensory epithelia. Deciphering the non-coding transcriptome in olfaction is relevant because these RNAs have been shown to play a role in chromatin modification and nuclear architecture reorganization, processes that accompany olfactory differentiation and olfactory receptor gene choice, one of the most poorly understood gene regulatory processes in mammals. In this study, we used a combination of in silico and ex vivo approaches to uncover a comprehensive catalogue of olfactory lncRNAs and to investigate their expression in the mouse olfactory organs. Initially, we used a novel machine-learning lncRNA classifier to discover hundreds of annotated and unannotated lncRNAs, some of which were predicted to be preferentially expressed in the main olfactory epithelium and the vomeronasal organ, the most important olfactory structures in the mouse. Moreover, we used whole-tissue and single-cell RNA sequencing data to discover lncRNAs expressed in mature sensory neurons of the main epithelium. Candidate lncRNAs were further validated by in situ hybridization and RT-PCR, leading to the identification of lncRNAs found throughout the olfactory epithelia, as well as others exquisitely expressed in subsets of mature olfactory neurons or progenitor cells.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"33 1","pages":"365 - 378"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/dnares/dsz015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract Very little is known about long non-coding RNAs (lncRNAs) in the mammalian olfactory sensory epithelia. Deciphering the non-coding transcriptome in olfaction is relevant because these RNAs have been shown to play a role in chromatin modification and nuclear architecture reorganization, processes that accompany olfactory differentiation and olfactory receptor gene choice, one of the most poorly understood gene regulatory processes in mammals. In this study, we used a combination of in silico and ex vivo approaches to uncover a comprehensive catalogue of olfactory lncRNAs and to investigate their expression in the mouse olfactory organs. Initially, we used a novel machine-learning lncRNA classifier to discover hundreds of annotated and unannotated lncRNAs, some of which were predicted to be preferentially expressed in the main olfactory epithelium and the vomeronasal organ, the most important olfactory structures in the mouse. Moreover, we used whole-tissue and single-cell RNA sequencing data to discover lncRNAs expressed in mature sensory neurons of the main epithelium. Candidate lncRNAs were further validated by in situ hybridization and RT-PCR, leading to the identification of lncRNAs found throughout the olfactory epithelia, as well as others exquisitely expressed in subsets of mature olfactory neurons or progenitor cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用新的机器学习模型揭示小鼠嗅觉长非编码转录组
关于哺乳动物嗅感觉上皮中的长链非编码rna (lncRNAs),我们所知甚少。破译嗅觉中的非编码转录组是相关的,因为这些rna已被证明在染色质修饰和核结构重组中发挥作用,这些过程伴随着嗅觉分化和嗅觉受体基因选择,这是哺乳动物中最不了解的基因调控过程之一。在这项研究中,我们采用了硅内和离体结合的方法,揭示了嗅觉lncrna的综合目录,并研究了它们在小鼠嗅觉器官中的表达。最初,我们使用了一种新的机器学习lncRNA分类器来发现数百个已注释和未注释的lncRNA,其中一些被预测优先表达在小鼠最重要的嗅觉结构主嗅觉上皮和犁鼻器中。此外,我们利用全组织和单细胞RNA测序数据发现了lncRNAs在主上皮成熟感觉神经元中的表达。通过原位杂交和RT-PCR进一步验证候选lncrna,鉴定出在整个嗅觉上皮中发现的lncrna,以及在成熟嗅觉神经元或祖细胞亚群中精确表达的其他lncrna。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Telomere-to-telomere genome assembly of Oldenlandia diffusa Genome and transcriptome analyses reveal genes involved in the formation of fine ridges on petal epidermal cells in Hibiscus trionum Chromosome-level genome assembly of Lilford’s wall lizard, Podarcis lilfordi (Günther, 1874) from the Balearic Islands (Spain) Mituru Takanami, 1929–2022 A highly contiguous genome assembly of red perilla (Perilla frutescens) domesticated in Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1