Fabrication, Properties, and Performance of Polymer-Clay Nanocomposites for Organic Dye Removal from Aqueous Media

Yao Mawuena Tsekpo, A. Appiah, L. Damoah, Daniel Amusah, E. Annan
{"title":"Fabrication, Properties, and Performance of Polymer-Clay Nanocomposites for Organic Dye Removal from Aqueous Media","authors":"Yao Mawuena Tsekpo, A. Appiah, L. Damoah, Daniel Amusah, E. Annan","doi":"10.1155/2023/5683415","DOIUrl":null,"url":null,"abstract":"Methylene blue dye (MB dye) is a harmful contaminant for wastewater streams of industries and is harmful to human and aquatic life. An ecofriendly sugar templating process was used to generate porous bentonite/polydimethylsiloxane (PB) and porous magnetite nanoparticles/bentonite/polydimethylsiloxane (PBNP) composite absorbents to remove MB dye in this study. During the infiltration of PDMS solution into the sugar template in the vacuum chamber, bentonite and magnetite particles were integrated on the surface of the PDMS, and the porous structure was generated during the leaching out of sugar particles in water. The absorbents were characterized using Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The absence of the methyl bond at 2924 cm-1 and phenol bond at 3325 cm-1 in the FTIR spectra of the formed membrane proves that the food grade sugar was completely removed. The SEM images confirm that porosity was achieved as well as uniform mixing of the in the formation of composite. MB dye was effectively removed from wastewater using the as-prepared composite as absorbent. The removal efficiencies of the composite PBNP and PB were ~91% and ~85%, respectively. The experimental data was applied to pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models as well as the Dubinin-Radushkevich, Harkins-Jura, and Elovich models for the adsorption isotherm. The data was found to fit the pseudo-second-order and Elovich models, respectively. The results show that the presence of magnetite nanoparticles improved MB dye removal significantly.","PeriodicalId":7279,"journal":{"name":"Adsorption Science & Technology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5683415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methylene blue dye (MB dye) is a harmful contaminant for wastewater streams of industries and is harmful to human and aquatic life. An ecofriendly sugar templating process was used to generate porous bentonite/polydimethylsiloxane (PB) and porous magnetite nanoparticles/bentonite/polydimethylsiloxane (PBNP) composite absorbents to remove MB dye in this study. During the infiltration of PDMS solution into the sugar template in the vacuum chamber, bentonite and magnetite particles were integrated on the surface of the PDMS, and the porous structure was generated during the leaching out of sugar particles in water. The absorbents were characterized using Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The absence of the methyl bond at 2924 cm-1 and phenol bond at 3325 cm-1 in the FTIR spectra of the formed membrane proves that the food grade sugar was completely removed. The SEM images confirm that porosity was achieved as well as uniform mixing of the in the formation of composite. MB dye was effectively removed from wastewater using the as-prepared composite as absorbent. The removal efficiencies of the composite PBNP and PB were ~91% and ~85%, respectively. The experimental data was applied to pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models as well as the Dubinin-Radushkevich, Harkins-Jura, and Elovich models for the adsorption isotherm. The data was found to fit the pseudo-second-order and Elovich models, respectively. The results show that the presence of magnetite nanoparticles improved MB dye removal significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚合物-粘土纳米复合材料去除水中有机染料的制备、性质和性能
亚甲基蓝染料(MB染料)是工业废水中的一种有害污染物,对人类和水生生物有害。采用环境友好型糖模板工艺制备多孔膨润土/聚二甲基硅氧烷(PB)和多孔磁铁矿纳米颗粒/膨润土/聚二甲基硅氧烷(PBNP)复合吸附剂去除MB染料。在真空室中,PDMS溶液渗入糖模板时,膨润土和磁铁矿颗粒在PDMS表面结合,糖颗粒在水中浸出时形成多孔结构。利用傅里叶红外光谱(FTIR)和扫描电镜(SEM)对吸收剂进行了表征。形成的膜的FTIR光谱中没有2924 cm-1的甲基键和3325 cm-1的酚键,证明食品级糖被完全去除。SEM图像证实了复合材料的孔隙度和均匀混合。用所制备的复合材料作为吸附剂,有效地去除了废水中的MB染料。复合pbbnp和PB的去除率分别为~91%和~85%。将实验数据应用于拟一阶(PFO)和拟二阶(PSO)动力学模型以及吸附等温线的Dubinin-Radushkevich、Harkins-Jura和Elovich模型。数据分别符合伪二阶和Elovich模型。结果表明,纳米磁铁矿的存在显著提高了MB染料的去除率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retracted: Water Retention Behaviour and Fracture Toughness of Coir/Pineapple Leaf Fibre with Addition of Al2O3 Hybrid Composites under Ambient Conditions Retracted: Environmental Applications of Sorbents, High-Flux Membranes of Carbon-Based Nanomaterials Retracted: Predicting Carbon Residual in Biomass Wastes Using Soft Computing Techniques Retracted: An Intelligent Carbon-Based Prediction of Wastewater Treatment Plants Using Machine Learning Algorithms Retracted: Methylene Blue Dye Photodegradation during Synthesis and Characterization of WO3 Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1